EGU22-1974
https://doi.org/10.5194/egusphere-egu22-1974
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Probabilistic water losses estimation in water distribution networks and comparison with the top down - water balance approach: A large-scale application to the city center of Patras in western Greece

Andreas Langousis1, Athanasios Serafeim1, George Kokosalakis1,2, Roberto Deidda3, and Irene Karathanasi4
Andreas Langousis et al.
  • 1University of Patras, Department of Civil Engineering, Patras, Greece (andlag@alum.mit.edu)
  • 2American College of Greece, Deree, School of Business and Economics Department of Maritime Transport and Logistics, Agia Paraskevi, Greece
  • 3Dipartimento di Ingegneria Civile, Ambientale ed Architettura, Università degli Studi di Cagliari, Cagliari, Italy
  • 4Municipal Enterprise of Water Supply and Sewerage of the City of Patras, Patras, Greece

Quantification of the Water Losses (WL) components in Water Distribution Networks (WDNs) is a vital task towards their reduction. However, current WL estimation methods rely on semi-empirical approaches with high uncertainty levels, which usually lead to inaccurate estimates of the lost volume. Here, we compare the probabilistic Minimum Night Flow (MNF) estimation method introduced by Serafeim et al. (2021) to the Water Balance components analysis, introduced by the International Water Association (IWA). The strong point of the Serafeim et al. (2021) approach is that it uses statistical metrics to filter out noise effects in the flow timeseries used for MNF estimation, leading to more accurate estimation of the low flows during night hours. The effectiveness of the applied methods is tested via a large-scale, real world application to the 4 largest Pressure Management Areas (PMAs) of the WDN of the city of Patras, the third largest city in Greece (see Serafeim at al., 2022). Although methodologically different, the two approaches lead to very similar results, substantiating the robustness of the Serafeim at al. (2021) approach which allows for reliable confidence interval estimation of the observed Minimum Night Flows, making it particularly suited for engineering applications.

Acknowledgements

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1162).

References

Serafeim, A.V., Kokosalakis, G., Deidda, R., Karathanasi I. and Langousis A (2021) Probabilistic estimation of minimum night flow in water distribution networks: large-scale application to the city of Patras in western Greece, Stoch. Environ. Res. Risk. Assess., https://doi.org/10.1007/s00477-021-02042-9

Serafeim, A.V.; Kokosalakis, G.; Deidda, R.; Karathanasi, I.; Langousis, A. (2022) Probabilistic Minimum Night Flow Estimation in Water Distribution Networks and Comparison with the Water Balance Approach: Large-Scale Application to the City Center of Patras in Western Greece, Water, 14, 98, https://doi.org/10.3390/w14010098

How to cite: Langousis, A., Serafeim, A., Kokosalakis, G., Deidda, R., and Karathanasi, I.: Probabilistic water losses estimation in water distribution networks and comparison with the top down - water balance approach: A large-scale application to the city center of Patras in western Greece, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1974, https://doi.org/10.5194/egusphere-egu22-1974, 2022.

Displays

Display file