PTt history from kyanite-sillimanite migmatites and garnet-staurolite schists from the Bayankhongor area, Mongolia indicates suprasubduction switching from extension to compression during Rodinia assembly
- 1Center for Lithospheric Research, Czech Geological Survey, 11821 Praha 1, Czech Republic
- 2Regional Geology of Crystalline Complexes Department, Czech Geological Survey, 11821 Praha 1, Czech Republic
- 3Institute of Petrology and Structural Geology, Charles University in Prague, Albertov 6, Praha 2, 12800, Czech Republic
- 4EOST, IPGS – CNRS UMR7516, Université de Strasbourg, 1 rue Blessig, F-67084, Strasbourg Cedex, France
- 5Department of Earth Science, University of California, Santa Barbara, CA 93106, United States
- 6Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Science, University of Barcelona, 08028 Barcelona
The tectonometamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by Baikalian Late Proterozoic – Early Cambrian cycle related to amalgamation of Proterozoic oceanic and continent fragments to Siberain landmass. Here we present in-situ monazite geochronology linked to P−T modelling of micashischsts and migmatite gneisses at the northern part of the Precambrian Baydrag block (central Mongolia) previously considered as a part of Baikalian metamorphic belt. Garnet-sillimanite-kyanite gneiss records first burial to the sillimanite stability at ~725 °C and 6.5 kbar, followed by burial to the kyanite stability at ~650 °C and ~8 kbar. The garnet-staurolite schist records burial to the staurolite-stability at ~620 °C and 6 kbar, followed by a nearly isothermal burial to ~580 °C and 9 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of c. 926−768 Ma in the Grt−Sil−Ky gneiss, and c. 937−754 Ma in the Grt-St schist. Based on monazite textural positon and internal zoning, the time of prograde burial and peak under a thermal gradient of 28–32 °C/km is estimated at c. 870−890 Ma. It is not clear whether such high grade conditions prevailed until a phase of further burial under a geothermal gradient of 18–22 °C/km and dated at 800−820 Ma. Additionally, monazite with dates of c. 568−515 Ma occurs as whole grains or as rims with sharp boundaries on Grenvillean monazite in Grt-St schist testifying for minor Baikalian overprint. Metamorphic zircon rims with Th/U ratio ~0.01–0.06 in Grt−Sil−Ky gneiss with 877 ± 7 Ma age, together with lower intercepts of zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high grade metamorphism. The P−T and geochronology data show anticlockwise P−T evolution from c. 930 to 750 Ma which is interpreted as a result of thickening of supra-subduction extensional and hot edifice – probably of back arc or arc type. This kind of prograde metamorphism was so far described only on the northern part of the Tarim block and interpreted as a result of initiation of peri-Rodinian subduction of Mirovoi Ocean. Here, we further discuss geodynamic consequences of a unique discovery of Tonian metamorphism in term of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly followed by strong mechanical coupling potentially related to onset of Rodinia splitting.
How to cite: Štípská, P., Peřestý, V., Soejono, I., Schulmann, K., Kylander Clark, A. R. C., Aguilar, C., Racek, M., Novotná, N., Hanžl, P., and Lexa, O.: PTt history from kyanite-sillimanite migmatites and garnet-staurolite schists from the Bayankhongor area, Mongolia indicates suprasubduction switching from extension to compression during Rodinia assembly , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2390, https://doi.org/10.5194/egusphere-egu22-2390, 2022.