EGU22-2400
https://doi.org/10.5194/egusphere-egu22-2400
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Segmentation of subducting oceanic plates by brittle-ductile damage

Taras Gerya1, David Bercovici2, and Thorsten Becker3,4
Taras Gerya et al.
  • 1ETH-Zurich, Institute of Geophysics, Department of Earth Sciences, Zurich, Switzerland (taras.gerya@erdw.ethz.ch)
  • 2Earth & Planetary Science, Yale University, New Haven, CT, United States
  • 3Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, United States
  • 4Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, United States

Subducting oceanic plates experience intense normal faulting during bending that accommodates the transition from horizontal to downward motion at the outer rise at subduction trenches. We investigated numerically the consequences of the plate bending on the mechanical properties of subducting slabs using 2D subduction models in which both brittle and ductile deformation, as well as grain size evolution, are tracked and coupled self-consistently. Numerical results suggest that pervasive brittle-ductile slab damage and segmentation can occur at the outer rise region and under the forearc that strongly affects subsequent evolution of subducting slabs in the mantle. This slab-damage phenomenon explains the subduction dichotomy of strong plates and weak slabs, the development of large-offset normal faults near trenches and the occurrence of segmented seismic velocity anomalies and interfaces imaged within subducted slabs. Furthermore, brittle-viscously damaged slabs show a strong tendency for slab breakoff at elevated mantle temperatures that may have destabilized continued oceanic subduction and plate tectonics in the Precambrian (Gerya et al., 2021).

Gerya, T.V., Bercovici, D., Becker, T.W. (2021) Dynamic slab segmentation due to brittle-ductile damage in the outer rise. Nature, 599, 245-250.

How to cite: Gerya, T., Bercovici, D., and Becker, T.: Segmentation of subducting oceanic plates by brittle-ductile damage, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2400, https://doi.org/10.5194/egusphere-egu22-2400, 2022.

Displays

Display file