EGU22-2643
https://doi.org/10.5194/egusphere-egu22-2643
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Applicability of aerial photography for identifying of oil mining technogenesis: mechanical transformations, bitumization, technogenic salinization

Pavel Sannikov, Yuliya Khotyanovskaya, and Sergei Buzmakov
Pavel Sannikov et al.
  • Perm State University, department of Biogeocenology and Nature Protection

The main type of research material is multi-season aerial photography of the oil mining karst river basin was carried out by unmanned aerial vehicle.

Visual photo delineation revealed the consequences of mechanical transformations, some hydrocarbon inputs (bitumization) and salts (technogenic salinization) were also identified. The last processes were verified using materials from direct geochemical surveys (chemical analyses of soils, surface waters and sets of ordinary photo of sample plots).

It has been established that mechanical transformations, as a rule, is detected by the color and shape of objects. Less often, it is necessary to additionally analyze indirect photo delineation signs: shape of the shadow, configuration of the borders, traces of heavy vehicle tracks. Photo delineation signs of technogenic salinization are turbidity of water and the acquisition of a bluish-whitish color; the change of the color of the water body to green-yellow; white ground salt spots. The bituminization process is sufficiently reliably identified only in the presence of open oil spills on the surface of soil or water. Despite the difficulty of photo delineation, the use of orthophotos allows to identify 13 new sites (26 in total in the studied area) of the processes of bitumization and technogenic salinization, which had not been noted during previous large-scale field survey.

The use of orthophotos to detect the processes of bitumization and technogenic salinization is effective, especially in combination with direct field studies. Conditions for using aerial photography to identify the consequences of oil mining technogenesis: pixel resolution should be equals or more precise than 20 cm / pixel (more desirable – equals or more precise than 10 cm / pixel), snowless shooting season, lack or low level of cloud cover, relatively low forest cover percent. The spatial distribution of the identified areas of all types of technogenesis indicates a close relationship with the location of oil mining facilities.

A promising direction for the development of the research is associated with the use of multispectral imaging, the improvement of attend field surveys, as well as the expansion of the experience of aerial photography of oil fields located in other natural conditions.

The reported study was funded by Russian Foundation for Basic Research (RFBR) and Perm Territory, project number 20-45-596018.

How to cite: Sannikov, P., Khotyanovskaya, Y., and Buzmakov, S.: Applicability of aerial photography for identifying of oil mining technogenesis: mechanical transformations, bitumization, technogenic salinization, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2643, https://doi.org/10.5194/egusphere-egu22-2643, 2022.

Displays

Display file