EGU22-2855
https://doi.org/10.5194/egusphere-egu22-2855
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parametric model for probabilistic estimation of water losses in water distribution networks: A large scale real world application to the city of Patras in western Greece

Athanasios V. Serafeim1, George Kokosalakis1,2, Roberto Deidda3, Irene Karathanasi4, and Andreas Langousis
Athanasios V. Serafeim et al.
  • 1University of Patras, Department of Civil Engineering, Patras, Greece (athanseraf@hotmail.com, andlag@upatras.gr)
  • 2American College of Greece, Deree, School of Business and Economics Department of Maritime Transport and Logistics, Athens, Greece
  • 3Dipartimento di Ingegneria Civile, Ambientale ed Architettura, Università degli Studi di Cagliari, Cagliari, Italy
  • 4Municipal Enterprise of Water Supply and Sewerage of the City of Patras, Patras, Greece

Abstract

Quantification of the leakage volume in pressure management areas (PMAs) is a vital task for water agencies’ financial viability. However, currently, there is no rigorous approach for their parametric modeling on the basis of networks’ specific characteristics and inlet/operating pressures. To bridge this gap, the current work focuses on the development of a probabilistic framework for minimum night flow (MNF) estimation in water distribution networks that: 1) parametrizes the MNF as a function of the network’s specific characteristics, and 2) parametrically describes water losses in individual PMAs as a function of the inlet/operating pressures. MNF estimates are obtained using the robust, non-parametric, probabilistic minimum night flow (MNF) estimation methodology developed and validated by Serafeim et al. (2021 and 2022), which allows for confidence interval estimation of the observed MNFs. The effectiveness of the developed model is tested in a large-scale real world application to the water distribution network of the city of Patras in western Greece, which serves approximately 200,000 consumers with more than 700 km of pipeline. The developed framework is validated through flow-pressure tests conducted by the Municipal Enterprise of Water Supply and Sewerage of the City of Patras to 78 PMAs of the network, indicating that the developed framework can be effectively used to improve water loss estimation and flow-pressure management in a morphologically and operationally diverse set of PMAs.

Acknowledgements

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1162).

 

References

Serafeim, A.V., Kokosalakis, G., Deidda, R., Karathanasi I. and Langousis A (2021) Probabilistic estimation of minimum night flow in water distribution networks: large-scale application to the city of Patras in western Greece, Stoch. Environ. Res. Risk. Assess., https://doi.org/10.1007/s00477-021-02042-9

Serafeim, A.V.; Kokosalakis, G.; Deidda, R.; Karathanasi, I.; Langousis, A. (2022) Probabilistic Minimum Night Flow Estimation in Water Distribution Networks and Comparison with the Water Balance Approach: Large-Scale Application to the City Center of Patras in Western Greece, Water, 14, 98, https://doi.org/10.3390/w14010098

How to cite: Serafeim, A. V., Kokosalakis, G., Deidda, R., Karathanasi, I., and Langousis, A.: Parametric model for probabilistic estimation of water losses in water distribution networks: A large scale real world application to the city of Patras in western Greece, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2855, https://doi.org/10.5194/egusphere-egu22-2855, 2022.

Displays

Display link