Constraints on Fracture Distribution in Geothermal Fields Using Seismic Noise Beamforming
- School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom of Great Britain – Scotland
Faults and fractures are crucial parameters for geothermal systems as they provide secondary permeability allowing fluids to circulate and heat up in the subsurface. In this study, we use an ambient seismic noise technique referred to as the three-component (3C) beamforming to detect and monitor faults and fractures at a geothermal field in Mexico.
Three-component (3C) beamforming extracts the polarizations, azimuths, and phase velocities of coherent waves as a function of frequency, providing a detailed characterisation of the seismic wavefield. In this study, 3C beamforming of ambient seismic noise is used to determine surface wave velocities as a function of depth and propagation direction. Anisotropic velocities are assumed to relate to the presence of faults giving an indication of the maximum depth of permeability, a vital parameter for fluid circulation and heat flow throughout a geothermal field.
We perform 3C beamforming on ambient noise data collected at the Los Humeros Geothermal Field (LHGF) in Mexico. The LHGF is situated in a complicated geological area, being part of a volcanic complex with an active tectonic fault system. Although the LHGF has been exploited for geothermal resources for over three decades, the field has yet to be explored at depths greater than 3 km. Thus, it is currently unknown how deep faults and fractures permeate and the LHGF has yet to be exploited to its full capacity.
3C beamforming was used to determine if the complex surface fracture system permeates deeper than is currently known. Our results show that anisotropy of seismic velocities does not decline significantly with depth, suggesting that faults and fractures, and hence permeability, persist below 3 km. Moreover, estimates of fast and slow directions, with respect to surface wave velocities, indicate the orientation of faults with increasing depth. The North-East and North-West orientation of the fast direction corresponds to the orientation of the Arroyo Grande and Los Humeros faults respectively. Various other orientations of anisotropy align with other major faults within the LHGF at depths permeating to 6 km.
How to cite: Kennedy, H., Gilligan, A., and Löer, K.: Constraints on Fracture Distribution in Geothermal Fields Using Seismic Noise Beamforming, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2940, https://doi.org/10.5194/egusphere-egu22-2940, 2022.