EGU22-3579
https://doi.org/10.5194/egusphere-egu22-3579
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

The influence of the 2018 Lombok earthquake sequence, Indonesia on the unrest Rinjani volcano inferred from InSAR time-series analysis 

Siyuan Zhao1, Simon McClusky1,2, Meghan Miller1, Phil Cummins1, and Matt Garthwaite2
Siyuan Zhao et al.
  • 1The Australian National University, Research School of Earth Sciences, Australia (siyuan.zhao@anu.edu.au)
  • 2Geoscience Australia, Canberra, ACT, Australia

Rinjani volcano is a highly active volcano located on Lombok Island in eastern Indonesia which has experienced ten eruptions in the last 100 years. Between 2014 and 2020, this stratovolcano has erupted twice, on 25th October 2015; and on 1st August 2016. Both eruptions lasted approximately two months, with activity concentrated in the volcanoes central Barujari Crater region. In 2018, four deadly (Mw 6.2 to 6.9) earthquakes struck the north coast of Lombok Island on 28th July, 5th August, and 19th August, causing hundreds of fatalities and extensive damage. These earthquakes also resulted in the remobilization of ash deposits on the flanks of Rinjani volcano located on the north island as landslides. Our InSAR-based finite fault rupture modelling suggests the estimated maximum fault slip of 1.4 m, 2.3 m, and 2.5 m for the three mainshocks located on southward dipping fault planes to the northwest-northeast of the Rinjani volcano occurred at depths of ~15 km, 12 km, and 32 km, respectively. Coulomb stress change modelling based on the these rupture models indicates about 1 MPa of extensional stress change at 10 to 20 km of depth around the crater region was observed, which may promote opening of the magma conduit. The short distance between the peak slip region and the volcano, as well as the stress change, raises the question of whether the earthquake sequence may have influenced the spatio-temporal deformation pattern of the Rinjani volcano.We use an InSAR time-series, consisting of 658 descending and 370 ascending Sentinal-1 interferograms to investigate the time-dependent inflation and deflation signals around the crater region generated by the 2015, 2016 eruptions and the 2018 earthquakes. We analyse the average inflation/deflation rate and the cumulative displacements in different periods between 2014 and 2020 to quantify the volcano deformation before and after the 2018 earthquake sequence. Our preliminary results reveal that the crater region has undergone rapid inflation of up to 20 mm/yr through the 2014 to 2017 period, before significantly slowing to ~10 mm/yr over the 2017 to 2018 period. During the first three months following the 2018 earthquake sequence, a noticeable deflation of the edifice was detected, followed by gentle inflation lasting until late 2020. These results imply that the influence of the 2018 earthquakes acted to reduce the pressure in the reservoir, at least temporarily. We will present results from modelling the volume change and the location of the volcano pressure source for better understanding how changes in the magma body and magma movement may have been influenced by the 2018 Lombok earthquake sequence.

How to cite: Zhao, S., McClusky, S., Miller, M., Cummins, P., and Garthwaite, M.: The influence of the 2018 Lombok earthquake sequence, Indonesia on the unrest Rinjani volcano inferred from InSAR time-series analysis , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3579, https://doi.org/10.5194/egusphere-egu22-3579, 2022.

Display materials

Display file

Comments on the display material

to access the discussion