EGU22-4440
https://doi.org/10.5194/egusphere-egu22-4440
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

The weakening of AMOC highly linked to climate warming outside the Arctic

Jiao Chen, Xidong Wang, and Xuezhu Wang
Jiao Chen et al.
  • Hohai University, College of Oceanography, China

Global warming since the industrial revolution has led to a series of changes in the atmosphere and ocean. As a key indicator of global ocean circulation, AMOC has shown a weakening in recent decades from both the observed and simulated results. This process which is not only affected by the local variation of the Arctic, but also by the ocean and atmosphere circulation changes in the middle and lower latitudes, might have important implications for future global climate changes. We employ the Alfred Wegener Institute Climate Model (AWI-CM 1.1 LR) and a method of perturbing coupled models to quantify and understand the impact of anthropogenic warming on the slowdown of AMOC. Conducted one control (CTRL) experiment and three sensitivity experiments (60N, 60NS, and GLOB) in which CO2 concentration were abruptly quadrupled either regionally (60N-north of 60°N, 60NS-south of 60°N) or globally (GLOB). The goal of our research is to identify the response of AMOC weakening to the quadrupling of CO2 concentration in different regions and provide future insight into ocean circulation changes in the context of climate warming. Our results show that CO2 forcing outside the Arctic dominates the weakening of AMOC. In a warming climate, the poleward heat transport increased due to the extra-Arctic CO2 forcing, which enhanced the upper ocean average stratification within the mixed-layer depth over Nordic Seas and Labrador Sea and thus weakens the AMOC to a large extent. The warming in upper-layer also lead to the dominant role of temperature contribution to stratification. However, in both the deep convection regions, the mechanism resulting in the strengthening of stratification might be quite different.

How to cite: Chen, J., Wang, X., and Wang, X.: The weakening of AMOC highly linked to climate warming outside the Arctic, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4440, https://doi.org/10.5194/egusphere-egu22-4440, 2022.

Displays

Display file