EGU22-5126
https://doi.org/10.5194/egusphere-egu22-5126
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Nature-based Solutions in actions: improving landscape connectivity during the COVID-19

Yangzi Qiu, Ioulia Tchiguirinskaia, and Daniel Schertzer
Yangzi Qiu et al.
  • Ecole des Ponts ParisTech, HM&Co, Champs-sur-Marne, France (yangzi.qiu@enpc.fr)

In the last few decades, Nature-based Solutions (NBS) has become widely considered a sustainable development strategy for the development of urban environments. Assessing the performances of NBS is significant for understanding their efficiency in addressing a large range of natural and societal challenges, such as climate change, ecosystem services and human health. With the rapid onset of the COVID-19 pandemic, the inner relationship between humans and nature becomes apparent. However, the current catchment management mainly focuses on reducing hydro-meteorological and/or climatological risks and improving urban climate resilience. This single-dimensional management seems insufficient when facing epidemics, and multi-dimensional management (e.g., reduce zoonosis) is necessary. With this respect, policymakers pay more attention to NBS. Hence, it is significant to increase the connectivity of the landscape to improve the ecosystem services and reduce the health risks from COVID-19 with the help of NBS.

This study takes the Guyancourt catchment as an example. The selected catchment is located in the Southwest suburb of Paris, with a total area of around 5.2 km2. The ArcGIS software is used to assess the patterns of structural landscape connectivity, and the heterogeneous spatial distribution of current green spaces over the catchment is quantified with the help of the scale-independent indicator of fractal dimension. To quantify opportunities to increase landscape connectivity over the catchment, a least-cost path approach to map potential NBS links urban green spaces through vacant parcels, alleys, and smaller green spaces. Finally, to prioritise these potential NBS in multiscale, a new scale-independent indicator within the Universal Multifractal framework is proposed in this study.

The results indicated that NBS can effectively improve the connectivity of the landscape and has the potential to reduce the physical and mental risks caused by COVID-19. Overall, this study proposed a scale-independent approach for enhancing the multiscale connectivity of the NBS network in urban areas and providing quantitative suggestions for on-site redevelopment.

How to cite: Qiu, Y., Tchiguirinskaia, I., and Schertzer, D.: Nature-based Solutions in actions: improving landscape connectivity during the COVID-19, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5126, https://doi.org/10.5194/egusphere-egu22-5126, 2022.

Displays

Display file