EGU22-5471
https://doi.org/10.5194/egusphere-egu22-5471
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Large mammalian herbivores increase the stability of soil carbon in grazing ecosystems

Dilip Naidu1,2 and Sumanta Bagchi1,2
Dilip Naidu and Sumanta Bagchi
  • 1Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
  • 2Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

Grazing by mammalian herbivores can serve as a climate mitigation strategy as it influences the size and stability of a large soil-C pool (more than 200 Pg C in the world’s grasslands, steppes, and savannas). With the continuing decline in large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool, and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and conditions under which they lead to gains/loss in soil-C are well known, their effects on the equally important aspect of stability of soil-C remain unknown. Also unknown is whether herbivore effects on soil-C and soil-N are related to each other. We use a replicated long-term grazer-exclusion experiment in the Trans-Himalayan ecosystem of northern India to evaluate the consequences of herbivore-loss on the stability of soil-C by quantifying interannual fluctuations (2006-2021). We test how grazers influence the stability of soil-C due to their impacts on both soil-C and soil-N. We find that experimental herbivore-exclusion raises inter-annual fluctuations in both soil-C and soil-N. Importantly, structural equations modelling show that herbivore-exclusion increases the soil-C and soil-N coupling, and weakens the stabilizing effect of soil-N on soil-C. Herbivore-loss, and consequent decline in grazer functions in soil, can therefore undermine the stability of soil-C. Conserving and restoring the functional role of large mammalian herbivores is critical for this valuable ecological service and towards climate mitigation.

How to cite: Naidu, D. and Bagchi, S.: Large mammalian herbivores increase the stability of soil carbon in grazing ecosystems, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5471, https://doi.org/10.5194/egusphere-egu22-5471, 2022.