EGU22-5494
https://doi.org/10.5194/egusphere-egu22-5494
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Stress characterization in the Canadian Shield: Complexity in stress rotation

Wenjing Wang and Douglas Schmitt
Wenjing Wang and Douglas Schmitt
  • Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, United States of America (wang4084@purdue.edu)

NE-SW stress compression in the Western Canadian Sedimentary Basin was discovered in the pioneering borehole breakout observations of Bell and Gough (1979). However, all of these and subsequent stress direction indicators are from the Phanerozoic sediment veneer, while the state of stress in the underlying craton remains unexplored. With the emergent demands on geothermal energy and wastewater and CO2 disposal, however, the state of stress in the cratons can no longer be safely ignored. To address this problem, we analyze various vintages of geophysical logs obtained from a serendipitous wellbore-of-opportunity drilled to 2.4 km in NE Alberta.  The profile of breakout orientations inferred from image and caliper logs exhibits a distinct rotation in breakout orientations changing from N100°E at 1650-2000m to N173°E at 2000-2210m and, finally, to N145°E at the bottom from 2210-2315m. The deepest measurement is consistent with the many observations in the overlying sediments. The heterogeneous breakout orientations at different depth intervals possibly indicate a heterogeneous in-situ stress field in the Precambrian craton. In addition, however, there is a strong correlation between the metamorphic textures and the breakout orientations suggesting that anisotropic strength may play an important role.  Using a recently developed algorithm we show that these observations can indeed be explained by foliation-controlled failure patterns in such anisotropic metamorphic rocks (Wang & Schmitt, accepted).  Models demonstrate that the observed breakout rotations can be produced under uniform stress orientations with failure slip planes controlled by the textured metamorphic rocks with anisotropic strength. This modeled stress field indicates that the stress field in the Canadian Shield where the far-field SH azimuth is at N50°E and the region is under normal/strike-slip faulting regime, is coupled with that in the overlying sedimentary basin.

How to cite: Wang, W. and Schmitt, D.: Stress characterization in the Canadian Shield: Complexity in stress rotation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5494, https://doi.org/10.5194/egusphere-egu22-5494, 2022.

Displays

Display link