In situ estimation of effective rock elastic moduli by seismic ambient vibrations
- 1Friedrich Schiller University Jena, Institute of Geosciences, Jena, Germany (jozef.mueller@uni-jena.de)
- 2Charles University, Faculty of Science, Prague, Czechia
- 3Institute of Geophysics of the Czech Academy of Science, Prague, Czechia (burjanek@ig.cas.cz)
In this study, we performed a non-invasive ambient noise investigation of unsaturated rock structures in the Bohemian Paradise (Bohemian Cretaceous Basin, Czech Republic). Our study focused on two key topics: 1) An in situ elastic moduli estimate of competent, horizontally deposited sandstone layers using ambient noise array measurements. Recordings were processed using an f-k array analysis, from which frequency-dependent Love and Rayleigh wave dispersion curves, as well as Rayleigh wave ellipticity, were retrieved. Data were inverted for the P- and S-wave velocity profiles, from which Young’s and shear moduli were successfully estimated. 2) A study of the local response of the Kapelník rock tower. We analysed a dataset of ambient noise recordings obtained from the top of the tower and its foot. Information regarding tower oscillation frequencies and directions, together with amplification ratios, were retrieved from a particle motion polarisation analysis and from site-to-reference spectral ratios. Euler-Bernoulli beam theory was also employed for interpreting measured data using elastic moduli estimated from noise array measurements.
How to cite: Müller, J. and Burjánek, J.: In situ estimation of effective rock elastic moduli by seismic ambient vibrations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6125, https://doi.org/10.5194/egusphere-egu22-6125, 2022.