EGU22-6390
https://doi.org/10.5194/egusphere-egu22-6390
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A new method for the attribution of breakpoints in segmentation of IWV difference time series 

Khanh Ninh Nguyen1,2, Olivier Bock1,2, and Emilie Lebarbier3
Khanh Ninh Nguyen et al.
  • 1Université de Paris, Institut de Physique du Globe de Paris, CNRS, IGN, F-75005 Paris, France
  • 2ENSG-Géomatique, IGN, F-77455 Marne-la-Vallée, France
  • 3Laboratoire Modal'X, UPL, Université Paris Nanterre, France

In recent years, the detection and correction of the non-natural irregularities in the long climatic records, so-called homogenization, has been studied. This work is motivated by the problem of identification of origins of the breakpoints in the segmentation of difference series (difference between a candidate series and a reference series). Several segmentation methods have been developed for the difference series, but many of them assume that the reference series is homogenous. However, the homogeneity of the reference series, in reality, is uncertain and unproven. In our study, we applied the segmentation method GNSSseg (Quarello et al., 2020) on the difference between the Integrated water vapour estimates of the CODE REPRO2015 GNSS data set and the ERA5 reanalysis. About 36.5% of change points can be validated from the GPS metadata, and the origins of the remaining 64.5% are questionable (Nguyen et al., 2021). The ambiguity can be leveraged when there is at least one nearby GPS station with respect to which the candidate series can be compared. The proposed method uses weighted t-tests combining the candidate GPS and ERA series and their homologues (denoted GPS' and ERA') from each nearby station. If sufficient consistency emerges from the six tests for all the nearby stations, a decision can be made whether the breakpoint detected in the candidate GPS-ERA series is due to GPS or, alternatively, to ERA. For each quadruplet (GPS, ERA, GPS', ERA'), six t-tests are performed, and the outcomes are combined. In a set of 81 globally distributed GNSS time series spanning more than 25 years, 56 series have at least one nearby station, where 171 breakpoints are detected in segmentation, in which 136 breakpoints are attributed to the GPS. Among those, 94 breakpoints have consistent results between all the nearby stations. GPS-related breakpoints are used for the correction of the mean shift in the difference series. The impact of the breakpoint correction on the GNSS IWV trend estimates is then evaluated. 

Quarello A, Bock O, & Lebarbier E. (2020). A new segmentation method for the homogenisation of GNSS-derived IWV time-series. arXiv: Methodology.

Nguyen KN, Quarello A, Bock O, Lebarbier E. Sensitivity of Change-Point Detection and Trend Estimates to GNSS IWV Time Series Properties. Atmosphere. 2021; 12(9):1102. https://doi.org/10.3390/atmos12091102

How to cite: Nguyen, K. N., Bock, O., and Lebarbier, E.: A new method for the attribution of breakpoints in segmentation of IWV difference time series , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6390, https://doi.org/10.5194/egusphere-egu22-6390, 2022.

Displays

Display file