EGU22-6408
https://doi.org/10.5194/egusphere-egu22-6408
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Designing the next generation of seismic arrays using fibre optic DAS

Ben Dando1, Kamran Iranpour1, Andreas Wuestefeld1, Sven Peter Näsholm1,2, Alan Baird1, and Volker Oye1,3
Ben Dando et al.
  • 1NORSAR, Kjeller, Norway (ben@norsar.no)
  • 2Department of Informatics, University of Oslo, Oslo, Norway
  • 3Department of Geosciences, University of Oslo, Oslo, Norway

While seismic arrays have been in use since the 1950s and are currently a vital part of the IMS, they have fundamentally consisted of single or 3-component seismometers to measure the ground motion at a discrete set of locations known as the array elements. With the advent of Distributed Acoustic Sensing (DAS) within the last two decades, there is currently great interest in exploring the potential seismological applications. In contrast to traditional seismometers, DAS measures the deformation (e.g. strain-rate) along the length of a fibre optic cable with great flexibility in the number of measurements that can be taken and where they are taken along a given cable layout. Applying such technology to seismic arrays offers an exciting opportunity to design array configurations that were previously impractical with individual seismometers. However, the use of DAS requires special consideration of its unique signal characteristics, which include insensitivity of P-waves arriving broadside to the fibre optic cable.

In this paper we present a design study for the installation of a new fibre optical cable at the site of the existing NORES seismic array in Norway – a 1.4 km aperture array located within a subarray of IMS station PS27 (NOA). We demonstrate through the modelling of DAS-specific array response functions how to optimize a new seismic array for regional seismic monitoring, highlighting the importance of incorporating DAS directivity effects. The final design will be installed in 2022 supplementing the current NORES array and will provide a unique data set that could lead to a new generation of DAS seismic arrays for both regional and global seismic monitoring.

How to cite: Dando, B., Iranpour, K., Wuestefeld, A., Näsholm, S. P., Baird, A., and Oye, V.: Designing the next generation of seismic arrays using fibre optic DAS, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6408, https://doi.org/10.5194/egusphere-egu22-6408, 2022.

Displays

Display file