EGU22-6690, updated on 28 Mar 2022
https://doi.org/10.5194/egusphere-egu22-6690
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A machine learning-based ensemble model for estimation of seawater quality parameters in coastal area

Xiaotong Zhu, Jinhui Jeanne Huang, Hongwei Guo, Shang Tian, and Zijie Zhang
Xiaotong Zhu et al.
  • Nankai univeristy, college of environmental science and engineering, China (1120200205@mail.nankai.edu.cn)

The precise estimation of seawater quality parameters is crucial for decision-makers to manage coastal water resources. Although various machine learning (ML)-based algorithms have been developed for seawater quality retrieval using remote sensing technology, the performance of these models in the application of specific regions remains significant uncertainty due to the different properties of coastal waters. Moreover, the prediction results of these ML models are unexplainable. To address these problems, an ML-based ensemble model was developed in this study. The model was applied to estimate chlorophyll-a (Chla), turbidity, and dissolved oxygen (DO) based on Sentinel-2 satellite imagery in Shenzhen Bay, China. The optimal input features for each seawater quality parameter were selected from the nine simulation scenarios which generated from eight spectral bands and six spectral indices. A local explanation method called SHapley Additive exPlanations (SHAP) was introduced to quantify the contributions of various features to the predictions of the seawater quality parameters. The results suggested that the ensemble model with feature selection enhanced the performance for three types of seawater quality parameters estimations (The errors were 1.7%, 1.5%, and 0.02% for Chla, turbidity, and DO, respectively). Furthermore, the reliability of the model performance was further verified for mapping the spatial distributions of water quality parameters during the model validation period. The spatial-temporal patterns of seawater quality parameters revealed that the distributions of seawater quality were mainly influenced by estuary input. Correlation analysis demonstrated that air temperature (Temp) and average air pressure (AAP) exhibited the closest relationship with Chla. The DO was most relevant with Temp, and turbidity was not sensitive to Temp, average wind speed (AWS), and AAP. This study enhanced the prediction capability of seawater quality parameters and provided a scientific coastal waters management approach for decision-makers.

How to cite: Zhu, X., Huang, J. J., Guo, H., Tian, S., and Zhang, Z.: A machine learning-based ensemble model for estimation of seawater quality parameters in coastal area, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6690, https://doi.org/10.5194/egusphere-egu22-6690, 2022.