EGU22-6796
https://doi.org/10.5194/egusphere-egu22-6796
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geocenter motions derived from BDS: The impact of solar radiation force model

Shi Huang, Yongqiang Yuan, Keke Zhang, and Xingxing Li
Shi Huang et al.
  • School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

The constellation of China’s BeiDou navigation satellite system (BDS) has been fully constructed since July 2020 and provides open services for worldwide users. Due to the natural sensitivity of satellite technique to geocenter motion, BDS has the capability to determine the time series of geocenter coordinates (GCCs). The purpose of this study is to assess the impact of solar radiation pressure (SRP) modeling on the BDS-derived geocenter motion. To that end, 3-year sets of daily GCCs have been determined with data of BDS. The data was recorded over the period 2019-2021 by a global network of 93 iGMAS stations. Different SRP models including the empirical CODE orbit model (ECOM/ECOM2) and the a prior box-wing model have been applied for BDS geocenter estimation, respectively. We find that under the purely empirical SRP model, the peak-to-peak amplitude of geocenter z-coordinates (GCC-Zs) can reach to 10 cm. In additional, IGSOs would bring obvious jumps to GCC-Zs during earth eclipse periods. The introduction of an a priori box-wing model can largely mitigate the spurious signals in the spectra of GCC-Zs, presenting (13.0, 4.5, 2.1, 2.4) mm for the amplitude of the 1, 3, 5, 7 cpy signals, compared to (26.2, 5.9, 1.2, 2.0) mm in the ECOM case. However, the jumps brought by IGSOs still remains, which could be caused by distortion of optical properties. Therefore, we simultaneously estimate the optical properties together with other parameters in the processing. This model, known as a prior adjustable bow-wing model (ABW), appears to improve the orbit modeling in the eclipsing season and eliminate the negative influence of IGSOs on GCC-Zs, which is reflected in the decrease of spurious signal at periods other than annual one and the amplitude of the 1, 3, 5, 7 cpy signals for GCC-Zs are (16.2, 3.8, 1.4, 0.3) mm. The ABW solution is thus closer to the geocenter motions determined with other space-geodetic techniques.

How to cite: Huang, S., Yuan, Y., Zhang, K., and Li, X.: Geocenter motions derived from BDS: The impact of solar radiation force model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6796, https://doi.org/10.5194/egusphere-egu22-6796, 2022.