EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Fingerprints of provenance in atmospheric dust collected at Granada city (Southern Iberian Peninsula).

Alberto Molinero-García, Juan Manuel Martín-García, María Virginia Fernández-González, and Rafael Delgado
Alberto Molinero-García et al.
  • University of Granada, Department of Soil Science and Agricultural Chemistry, Spain (

Dust in the Earth´s atmosphere and deposition rates are both increasing in last decades. The south of Iberian Peninsula is deeply affected by air masses coming from Africa, one of the largest sources of atmospheric dust in the world (50%–70% of total emissions worldwide). Granada city (south of the Iberian Peninsula) has one of Spain’s highest atmospheric pollution levels (including particulate matter). African dust intrusion should be considered in the Iberian Peninsula because of the proximity of the Sahara Desert. Dust properties allows for a hypothesis on dust-provenance and dust-origin. Our study characterised atmospheric dust collected in Granada city during three monthly periods: 4PA (2012), 16PA (2013), and 28PA (2014). The main goal was to determine dust characteristics and genesis using a set of different techniques. The backward trajectories study separated the samples, according to their Saharan influence, into two groups: a) scarce influence (sample 16PA, 6% of days with Saharan influence); b) greater influence (samples 4PA and 28PA, ≈30% of days with Saharan influence). The two groups was confirmed by all the properties analysed, namely, PM10 concentration, deposition rates, grain size, mineralogy, and elemental composition (minor, including rare earth elements). Our samples showed similarities with soils from the Iberian Peninsula and other atmospheric dust collected in Granada. A remarkable discover was that particle morphology and surface microtextures on atmospheric quartz also verified the grouping. A principal component analysis of the quartz shape parameters insists on the differentiation of these groups, therefore we propose, as a fingerprint of provenance, the morphoscopy of atmospheric quartz grains (a main component of atmospheric dust).

How to cite: Molinero-García, A., Martín-García, J. M., Fernández-González, M. V., and Delgado, R.: Fingerprints of provenance in atmospheric dust collected at Granada city (Southern Iberian Peninsula)., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7117,, 2022.