EGU22-7157
https://doi.org/10.5194/egusphere-egu22-7157
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

The influence of glacial induced adjustment and other geological factors on the depth distribution of permeabilities in crystalline rocks

Peter Achtziger-Zupancic
Peter Achtziger-Zupancic
  • Department of Engineering and Hydrogeology, RWTH Aachen, Aachen, Germany

The regionalization of hydraulic properties like specific yield/storativity or permeability in fractured crystalline rock is of utmost importance for a variety of applications, such as geothermal and other resources, waste disposal or underground construction. However, accurate predictions for these properties – particularly for undrilled sites – bear a high degree of uncertainty as already direct observations through hydraulic in-situ tests show a variance of about 2 orders of magnitude at any depth (Achtziger-Zupančič et al., 2017).

Permeability-depth relationships using multiple log-log regressions conducted on an extended version of the worldwide permeability compilation of crystalline rocks (roughly 30000 entries in Achtziger-Zupančič et al., 2017; now consisting of about 50000 single in-situ permeability measurements to depths of 2000 mbgs) indicate that depth is generally the most important geological factor, resulting in a permeability decrease of three to four orders of magnitude in the investigated depth range. Specific yield and storativity show a similar but less pronounced depth trend. Beside depth, most influential factors for permeability in crystalline rock are the long-term tectono-geological history described by geological province which locally is overprinted by current seismotectonic activity as determined by peak ground acceleration (Achtziger-Zupančič et al., 2017). Although petrography might be of local importance, only a low impact has been observed for the global dataset, besides lithologies allowing for karstification. Ongoing vertical movements – particularly resulting from glacial isostatic adjustment – alter the permeability trend with depth.

The latter shows distinct trends starting at about logK -14.5 to -14.8 m² at 100 mbgs and showing diversion of about 1.5 orders of magnitude at 1 km depth between areas without significant uplift and areas with uplift of more than 4 mm/y as determined from a probabilistic interpolation of global geodetic measurements (Husson et al., 2018). The difference is attributed either to glacial loading (normal faulting or reactivation) induced destruction preserved during glacial induced rebound and/or uplift-caused horizontal fracture growth which improved connectivity in the rock mass. Areas undergoing subsidence show similar trends like highly uplifting areas which is attributed to efficient normal faulting induced destruction of the rock mass.

References:

Achtziger-Zupančič, P, Loew, S and Mariéthoz, G (2017). A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. JGR: Solid Earth 122(5): 3513-3539.

Husson, L, Bodin, Th, Spada, G, Choblet, G and Kreemer, C (2018). Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of Glacial Isostatic Adjustment. J Geodyn 122: 25-40.

How to cite: Achtziger-Zupancic, P.: The influence of glacial induced adjustment and other geological factors on the depth distribution of permeabilities in crystalline rocks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7157, https://doi.org/10.5194/egusphere-egu22-7157, 2022.