EGU22-7213
https://doi.org/10.5194/egusphere-egu22-7213
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Exploring the impact of different past- and present-day climatic forcings on Antarctic Ice sheet evolution

Christian Wirths1,2, Johannes Sutter1,2, and Thomas Stocker1,2
Christian Wirths et al.
  • 1University of Bern, Climate and Environmental Physics (CEP), Physics, Switzerland
  • 2Oeschger Center for Climate Change Research, University of Bern, Switzerland

Simulations of past and future Antarctic ice sheet (AIS) evolution depend, besides the intrinsic model specific uncertainties, on the applied climatic forcing. To model the past, present and future Antarctic Ice Sheet, a large set of different forcings from global and regional climate models, is available. For a more complete understanding of the modeled ice sheet dynamics, it is therefore critical to understand the influence and the resulting model differences and uncertainties associated with climate forcing choices.  

In this study we examine the impact of different climatic forcings onto the equilibrium state of the AIS for past and present-day conditions. We apply past (LGM, LIG, mid-Pliocene warm period) and present-day climatic forcings from regional (RACMO2.3p2, MAR3.10, HIRHAM5 and COSMO-CLM) and global (PMIP4 ensemble) climate models onto the Parallel Ice Sheet Model (PISM v.2.0). Further, we investigate the response of the total ice mass, its distribution and the grounding line dynamics of the modeled equilibrium ice sheet under varying ice sheet sensitivity parameterizations.  

With this analysis, we aim to gain a better understanding of AIS modelling uncertainties due to the applied climatic forcings and parameterizations, which will improve the assessment of modeled past and future ice-sheet evolution.  

How to cite: Wirths, C., Sutter, J., and Stocker, T.: Exploring the impact of different past- and present-day climatic forcings on Antarctic Ice sheet evolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7213, https://doi.org/10.5194/egusphere-egu22-7213, 2022.

Displays

Display file