The potential of automated snow avalanche detection from SAR images for the Austrian Alpine region using a learning-based approach
- 1Department of Geography and Regional Sciences, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
- 2Virtual Vehicle Research GmbH, Inffeldgasse 21a, 8010 Graz, Austria
- 3Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria
- 4NORCE Research Institute, P.O.B 22 Nygårdstangen, 5838 Bergen, Norway
Each year, snow avalanches cause many casualties and tremendous damage to infrastructure. Prevention and mitigation mechanisms for avalanches are established for specific regions only. However, the full extent of the overall avalanche activity is usually barely known as avalanches occur in remote areas making in-situ observations scarce. To overcome these challenges, an automated avalanche detection approach using the Copernicus Sentinel-1 synthetic aperture radar (SAR) data has recently been introduced for some test regions in Norway. This automated detection approach from SAR images is faster and gives more comprehensive results than field-based detection provided by avalanche experts. The Sentinel-1 programme has provided - and continues to provide - free of charge, weather-independent, and high-resolution satellite Earth observations since its start in 2014. Recent advances in avalanche detection use deep learning algorithms to improve the detection rates. Consequently, the performance potential and the availability of reliable training data make learning-based approaches an appealing option for avalanche detection.
In the framework of the exploratory project SnowAV_AT, we intend to build the basis for a state-of-the-art automated avalanche detection system for the Austrian Alps, including a "best practice" data processing pipeline and a learning-based approach applied to Sentinel-1 SAR images. As a first step towards this goal, we have compiled several labelled training datasets of previously detected avalanches that can be used for learning. Concretely, these datasets contain 19000 avalanches that occurred during a large event in Switzerland in January 2018, around 6000 avalanches that occurred in Switzerland in January 2019, and around 800 avalanches that occurred in Greenland in April 2016. The avalanche detection performance of our learning-based approach will be quantitatively evaluated against held-out test sets. Furthermore, we will provide qualitative evaluations using SAR images of the Austrian Alps to gauge how well our approach generalizes to unseen data that is potentially differently distributed than the training data. In addition, selected ground truth data from Switzerland, Greenland and Austria will allow us to validate the accuracy of the detection approach. As a particular novelty of our work, we will try to leverage high-resolution weather data and combine it with SAR images to improve the detection performance. Moreover, we will assess the possibilities of learning-based approaches in the context of the arguably more challenging avalanche forecasting problem.
How to cite: Kapper, K. L., Muckenhuber, S., Goelles, T., Trügler, A., Kuric, M., Abermann, J., Grahn, J., Malnes, E., and Schöner, W.: The potential of automated snow avalanche detection from SAR images for the Austrian Alpine region using a learning-based approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7313, https://doi.org/10.5194/egusphere-egu22-7313, 2022.