Hybrid-Vlasov simulations of ion velocity distribution functions within Kelvin-Helmholtz vortices
- 1Department of Physics, University of Helsinki, Helsinki, Finland
- 2Finnish Meteorological Institute, Helsinki, Finland
The Kelvin-Helmholtz instability (KHI) is a ubiquitous fluid instability in space plasmas. At the flanks of Earth's magnetopause, the KHI can typically develop during periods of northward interplanetary magnetic field, and it drives the solar wind-magnetosphere mass/energy transfer in the absence of dayside magnetic reconnection. We use local 2D-3V hybrid-Vlasov simulations to study the ion velocity distribution functions (VDFs) associated with the KHI in a magnetopause-like setup. Our results indicate that when the KHI enters the non-linear stage, the ion VDFs in the region perturbed by the instability become increasingly non-Maxwellian. The degree of non-Maxwellianity increases along with the magnitude of the density jump across the KHI boundary. We assess the impact of the non-Maxwellian ion VDFs on the development of the KHI, and compare the simulated VDFs with those observed by the Magnetospheric Multiscale Mission.
How to cite: Tarvus, V., Turc, L., Zhou, H., Cozzani, G., Ganse, U., Pfau-Kempf, Y., Alho, M., Battarbee, M., Bussov, M., Dubart, M., George, H., Grandin, M., Horaites, K., Manglayev, T., Papadakis, K., Suni, J., Zaitsev, I., and Palmroth, M.: Hybrid-Vlasov simulations of ion velocity distribution functions within Kelvin-Helmholtz vortices, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7354, https://doi.org/10.5194/egusphere-egu22-7354, 2022.