EGU22-7406
https://doi.org/10.5194/egusphere-egu22-7406
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Correlative, cross-platform microscopy application reveals deformation mechanisms during seismic slip along wet carbonate faults

Markus Ohl1, Helen King1, Andre Niemeijer1, Jianye Chen2, and Oliver Plümper1
Markus Ohl et al.
  • 1Utrecht University, Department of Earth Sciences, Utrecht, Netherlands (m.ohl@uu.nl)
  • 2Institute of Geology, Chinese Earthquake Administraion, Beijing, China

Faults in the upper crust are considered major fluid pathways, raising the need for deformation experiments under wet conditions that focus on the nanoscale interaction between gouge material and pore fluid. Friction experiments on calcite at seismic slip velocities show strong dynamic weakening behaviour attributed to a combination of grain-size reduction and nanoscale diffusion. The resulting syn-deformational physico-chemical interactions between fluid and calcite are key in deciphering deformation mechanisms and rheological changes during and after (seismic) faulting in the presence of a fluid phase. We conducted rotary shear deformation experiments (1 m/s, σn = 2 and 4 MPa) on calcite gouge with water enriched in 18O (97 at%) as pore fluid to track and quantify potential fluid – mineral interaction processes. With our correlative, cross-platform workflow approach, we integrate Raman spectroscopy, nanoscale, and Helium-Ion secondary ion mass spectrometry (nanoSIMS, HIMSIMS), focused ion beam – scanning electron microscope (FIB-SEM) and transmission electron microscopy (TEM) to characterise the nanostructure and analyse isotope distribution. Raman analyses confirm the incorporation of 18O into the calcite crystal structure, as well as the presence of amorphous carbon. We identify three new band positions relating to the possible isotopologues of CO32- (reflecting 16O substitution by 18O). In addition, we detect portlandite (Ca(OH)2), pointing to a hydration reaction of lime (CaO) with water. Raman and NanoSIMS maps reveal that 18O is incorporated throughout the deformed volume, implying that calcite isotope exchange affected the entire fault gouge. Based on oxygen self-diffusion rates in calcite we conclude that solid-state 18O – isotope exchange cannot explain the observed incorporation of 18O into the calcite crystals during wet, seismic deformation. Hydration of portlandite and calcite containing 18O, implies breakdown and decarbonation of the starting calcite and the nucleation of new calcite grains. Our results question the state and nature of calcite gouges during seismic deformation and challenge our knowledge of the rheological properties of wet calcite fault gouges at high strain rates. The observations suggest that the physico-chemical changes are a crucial part of hydrous calcite deformation and have implications for the development of microphysical models that allow us to quantitatively predict crustal fault rheology.

How to cite: Ohl, M., King, H., Niemeijer, A., Chen, J., and Plümper, O.: Correlative, cross-platform microscopy application reveals deformation mechanisms during seismic slip along wet carbonate faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7406, https://doi.org/10.5194/egusphere-egu22-7406, 2022.