EGU22-7501
https://doi.org/10.5194/egusphere-egu22-7501
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Understanding the recent evolution of a small Alpine glacier: from geodetic mass balance reconstruction (1991-2020) to local variability of glaciers retreat.

Luca Mondardini, Paolo Perret, Simone Gottardelli, Marco Frasca, and Fabrizio Troilo
Luca Mondardini et al.
  • Fondazione Montagna sicura, Area ghiacciai e Alta montagna, Courmayeur (AO), Italy (lmondardini@fondms.org)

High Alpine environments are rapidly changing in response to climate change, and understanding the evolution of small glaciers is a crucial step to investigate future water availability for populations that inhabits these areas. With an average loss of 1.6 km2 of regional glacier area every year, Aosta Valley is predicted to lose most of its glaciers before the end of the century. With this study, we present a comprehensive analysis of a small glacier’s recent mass balance evolution (1991-2020) where no specific previous mass balance data was available. To do so, we combined historical data (topographic surveys and LiDAR DEMs of the area) with newly acquired satellite stereo imagery and aerophotogrammetric surveys to reconstruct different digital elevation models of the Thoula glacier (0.52 Km2), located on the Italian side of the Mont-Blanc Massif. The ice volume loss that occurred over this period was assessed by accomplishing two GPR surveys to investigate the ice thickness and the underlying bedrock. The Thoula glacier shows a significantly lower loss of volume in comparison to other glaciers located in the Aosta Valley region as well as most of the WGMS (Word Glacier Monitoring Service) reference glaciers for Central Europe. Particular weather-climatic conditions of the Mont Blanc Massif area, generally characterized by a greater amount of snowfall, could explain the observed differences, however, the present study shows how understanding spatio-temporal local variability of small glaciers can significantly contribute to recognizing different regional patterns developing in response to climate change.

How to cite: Mondardini, L., Perret, P., Gottardelli, S., Frasca, M., and Troilo, F.: Understanding the recent evolution of a small Alpine glacier: from geodetic mass balance reconstruction (1991-2020) to local variability of glaciers retreat., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7501, https://doi.org/10.5194/egusphere-egu22-7501, 2022.