EGU22-7665
https://doi.org/10.5194/egusphere-egu22-7665
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modeling the variability of Martian O+ ion escape due to Solar Wind forcing

Ronan Modolo1, Francois Leblanc1, Jean-Yves Chaufray1, Norberto Romanelli2,3, Eduard Dubinin4, Vincent Génot5, Claire Baskevitch1, David Brain6, Shannon Curry7, and Robert Lillis7
Ronan Modolo et al.
  • 1LATMOS / university of Versailles, LATMOS, GUYANCOURT, France (ronan.modolo@latmos.ipsl.fr)
  • 2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
  • 3CRESST II, University of Maryland, Baltimore County, USA
  • 4Max Planck Institute, MPS, Gottingen, Germany
  • 5IRAP / U. Paul Sabatier / CNRS / CDPP, 9 avenue du Colonnel Roche, 31400 Toulouse, France
  • 6LASP / Univ. of Colorado, Boulder, Colorado, USA
  • 7SSL / Univ. of Berkeley, Berkeley, California, USA

During the last decade, MAVEN space mission have emphasized a widespread spatial distribution of escaping O+ ions (Brain et al., 2015; Dong et al., 2015; Curry et al., 2015). Statistical studies have demonstrated that such structure is constant and present an asymmetry with respect to the solar wind convective electric field direction. In the Mars Solar Ecliptic coordinate system, continuous large O+ ion fluxes have been observed from the Martian wake to the Northward hemisphere. Global hybrid models have been developed since more than fiffteen years (Modolo et al., 2005, 2016; Brecht and Ledvina, 2006; Kallio et al., 2006) predicting and reproducing successfully the main characteristics of these escaping ion signatures. To further characterize this heavy-ion escape and its variability due to the solar wind forcing, global hybrid simulations have been performed with different set of upstream solar wind parameters. The impact of the solar wind drivers on the dynamics of O+ ion fluxes are reported and compared to the statistical ion fluxes maps derived from MAVEN/STATIC observations (Dong et al., 2015).

Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., et al. (2015). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophys. Res. Lett. 42, 9142–9148. doi:10.1002/2015GL065293

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., et al. (2015). Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophys. Res. Lett. 42, 8942–8950. doi:10.1002/2015GL065346

Curry, S. M., Luhmann, J. G., Ma, Y. J., Dong, C. F., Brain, D., Leblanc, F., et al. (2015). Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data-based models. Geophys. Res. Lett. 42, 9095–9102. doi:10.1002/2015GL065304

Modolo, R., Chanteur, G. M., Dubinin, E., and Matthews, A. P. (2005). Influence of the solar EUV flux on the Martian plasma environment. Annales Geophysicae 23, 433–444. doi:10.5194/angeo-23-433-2005

 

Brecht, S. H. and Ledvina, S. A. (2006). The Solar Wind Interaction With the Martian Ionosphere/Atmosphere 126, 15–38. doi:10.1007/s11214-006-9084-z

Kallio, E., Fedorov, A., Budnik, E., Sa¨les, T., Janhunen, P., Schmidt, W., et al. (2006). Ion escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements 182, 350–359. doi:10.1016/j.icarus.2005.09.018

 

How to cite: Modolo, R., Leblanc, F., Chaufray, J.-Y., Romanelli, N., Dubinin, E., Génot, V., Baskevitch, C., Brain, D., Curry, S., and Lillis, R.: Modeling the variability of Martian O+ ion escape due to Solar Wind forcing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7665, https://doi.org/10.5194/egusphere-egu22-7665, 2022.