EGU22-8679
https://doi.org/10.5194/egusphere-egu22-8679
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Conduits feeding new eruptive vents at Fagradajsfjall, Iceland, mapped by high-resolution ICEYE SAR satellite in a daily repeat orbit

Vincent Drouin1, Valentyn Tolpekin2, Michelle Parks1, Freysteinn Sigmundsson3, Daniel Leeb4, Shay Strong2, Ásta Rut Hjartardóttir3, Halldór Geirsson3, Páll Einarsson3, and Benedikt Gunnar Ófeigsson1
Vincent Drouin et al.
  • 1Iceland Met Office, Reykjavík, Iceland (vincentdr@vedur.is)
  • 2ICEYE Oy, Espoo, Finland
  • 3Nordic Volcanological Center, University of Iceland, Reykjavik, Iceland.
  • 4Iceland Space Agency, Reykjavik, Iceland

Using ground deformation measurements of high spatial and temporal resolution SAR, the understanding of new vents created during volcanic eruptions can be improved with 3D mapping of the activated shallow magma plumbing system. Interferometric analysis of radar data from ICEYE X-band satellites with daily coherent ground track repeat (GTR) provides unprecedented time series of deformation in relation to the opening of 6 eruptive vents over 26 days in 2021, at Fagradalsfjall, Iceland. Unrest started in this location at the end of February and tens of thousands of earthquakes were recorded during the following four weeks. The seismicity was linked to gradual formation of a magma-filled dike in the crust and triggered seismicity along the plate boundary. On 19 March, an eruptive fissure opened near the center of the dyke. New vents and eruptive fissures opened on the 5th, 7th, 10th, and 13th April. The daily acquisition rate of the ICEYE satellite facilitated the observation of the ground openings associated with each new vents. Each event can be observed individually and with minimal loss of signal caused by new lava emplacement, which would occur if images were acquired at a slower rate. Being able to retrieve deformation near the edge of the fissure ensures that we have the optimal constraints needed for modelling the subsurface magma path. The ICEYE dataset consists of Stripmap acquisitions (30x50km) in the period 3-21 March, and Spotlight acquisitions (5x5 km) from 22 March and onward. Images have a resolution of about 2 m x 3 m, and 0.5 m x 0.25 m, respectively. The descending 1-day interferogram covering each individual event is used to invert for the distributed opening along the dike plane. We find that each fissure was associated with opening of up to 0.5 meters in the topmost 200 m of crust. The conduits propagated vertically at least 50–80 m/h. The new fissure locations were influenced by local conditions and induced stress changes within the shallow crust.

How to cite: Drouin, V., Tolpekin, V., Parks, M., Sigmundsson, F., Leeb, D., Strong, S., Hjartardóttir, Á. R., Geirsson, H., Einarsson, P., and Ófeigsson, B. G.: Conduits feeding new eruptive vents at Fagradajsfjall, Iceland, mapped by high-resolution ICEYE SAR satellite in a daily repeat orbit, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8679, https://doi.org/10.5194/egusphere-egu22-8679, 2022.