EGU22-8773, updated on 15 Nov 2022
https://doi.org/10.5194/egusphere-egu22-8773
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long-term variations of diffuse CO2 at Cumbre Vieja volcano, La Palma, Canary Islands

José Manuel Santana de León1, Gladys V. Melián1,2, Claudia Rodríguez1,2, Germán Cervigón-Tomico1, Victor Ortega1, David Martínez van Dorth1,2, Iván Cabrera-Pérez1, María Cordero1, Monika Przeor1, Rui Filipe Fagundes Silva3, Sandro Branquinho de Matos3, Eleonora Baldoni3, Maria Margarida Pires Ramalho3, Fátima Viveiros3, David Calvo1, and Nemesio M. Pérez1,2
José Manuel Santana de León et al.
  • 1Instituto Volcanológico de Canarias (INVOLCAN), 38320 San Cristóbal de La Laguna, Tenerife, Canary Islands
  • 2Instituto Tecnológico y de Energías Renovables (ITER), 38600 Granadilla de Abona, Tenerife, Canary Islands
  • 3Instituto de Investigação em Vulcanologia e Avaliação de Riscos (IVAR), Azores, Portugal

On September 19, 2021, a volcanic eruption began at the west flank of Cumbre Vieja, La Palma, the most northwestern of the Canary Islands. The lava flows caused the evacuation of thousands of residents living in the vicinity of the volcano, and 1,219 hectares were covered by lava flows. After 85 days of activity, the eruption ended on December 13, 2021. Since visible volcanic gas emissions (fumaroles, hot springs, etc.) do not occur at the surface environment of Cumbre Vieja, the geochemical program for the volcanic surveillance has been focused mainly on diffuse (non-visible) degassing studies. Since 2001, diffuse CO2 emission surveys have been yearly performed in summer periods to minimize the influence of meteorological variations. Measurements of soil CO2 efflux have been performed following the accumulation chamber method in about 600 sites and spatial distribution maps have been constructed following the sequential Gaussian simulation (sGs) procedure to quantify the diffuse CO2 emission from the studied area. In the period 2001-2016, the diffuse CO2 output released to the atmosphere from Cumbre Vieja volcano ranged between 320 to 1,544 t·d-1. During pre-eruptive period (2016-2021), time series of the diffuse CO2 emission showed a change with an increasing trend from 788 t·d-1 up to 1,870 t·d-1, coinciding with the beginning of the seismic swarms. This increase of diffuse CO2 emission is interpreted as a geochemical precursory signal of volcanic eruption of Cumbre Vieja, on September 19, 2021. The observed increase on the diffuse CO2 emission during this time window suggests that in October 2017 a process of magma ascent began from the upper mantle to depths between 35-25 km, at which the seismic swarms were recorded for four years. During eruption period, diffuse CO2 emission showed strong temporal variations with a minimum value of the diffuse CO2 emission in October 21, followed by an increase trend of up to 4,435 t·d-1 on December 14, the highest of time series and coinciding with the end of the eruption. During the post-eruptive period, the diffuse CO2 emission has shown a descending trend. Our results demonstrate that periodic surveys of diffuse CO2 emission are extremely important in the volcanic surveillance tools of Cumbre Vieja to improve the detection of early warning signals of future volcanic unrest episodes.

 

 

 

How to cite: Santana de León, J. M., Melián, G. V., Rodríguez, C., Cervigón-Tomico, G., Ortega, V., Martínez van Dorth, D., Cabrera-Pérez, I., Cordero, M., Przeor, M., Silva, R. F. F., Matos, S. B. D., Baldoni, E., Ramalho, M. M. P., Viveiros, F., Calvo, D., and Pérez, N. M.: Long-term variations of diffuse CO2 at Cumbre Vieja volcano, La Palma, Canary Islands, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8773, https://doi.org/10.5194/egusphere-egu22-8773, 2022.