EGU22-9558
https://doi.org/10.5194/egusphere-egu22-9558
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution

Valentin Couvreur1, Flavius C Pascut2, Daniela Dietrich3, Nicky Leftley4, Guilhem Reyt4,5, Yann Boursiac6, Monica Calvo-Polanco6,7, Ilda Casimiro8, Christophe Maurel6, David E Salt4,5, Xavier Draye1, Darren M Wells4,5, Malcolm J Bennett4,5, and Kevin F Webb2
Valentin Couvreur et al.
  • 1Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium (valentin.couvreur@uclouvain.be)
  • 2Faculty of Engineering, University of Nottingham, Nottingham, UK
  • 3School of Biological Sciences, University of Bristol, Bristol, UK
  • 4School of Biosciences, University of Nottingham, Sutton Bonington, UK
  • 5Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
  • 6Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Université de Montpellier, Montpellier, France
  • 7Instituto de Investigación en Agrobiotecnología, University of Salamanca, Salamanca, Spain
  • 8Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain

A key impediment to studying water-related mechanisms in plants is the inability to noninvasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring deuterated water fluxes within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when en-route to shoot tissues if endodermal diffusion barriers are intact, thereby separating ‘two water worlds’ inside roots.

How to cite: Couvreur, V., Pascut, F. C., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., Calvo-Polanco, M., Casimiro, I., Maurel, C., Salt, D. E., Draye, X., Wells, D. M., Bennett, M. J., and Webb, K. F.: Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9558, https://doi.org/10.5194/egusphere-egu22-9558, 2022.

Displays

Display file