EGU22-9610
https://doi.org/10.5194/egusphere-egu22-9610
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Combination of integral transforms by spectral weighting – an overview  

Martin Pitoňák, Michal Šprlák, and Pavel Novák
Martin Pitoňák et al.
  • NTIS - New Technologies for the Information Society, University of West Bohemia, Department of Geomatics, Plzeň, Czechia

Geodetic boundary-value problems (BVPs) and their solutions represent an important tool for describing and modelling potential fields such as the Earth’s gravitational field. Solutions to spherical geodetic BVPs lead to spherical harmonic series or surface convolution integrals with Green’s kernel functions. New BVPs have recently been formulated reflecting development of sensors. BVPs have been also developed for observables measured by kinematic sensors on moving platforms, i.e., airplanes and satellites. Solutions to BVPs for higher-order derivatives of the gravitational potential as boundary conditions are represented by multiple integral transforms. For example, solutions to gravimetric, gradiometric and gravitational curvature BVPs are represented by two, three and four integral transforms, respectively. Theoretically, each of the nine transforms provides an identical value of the gravitational potential, but practically, when discrete noisy observations are exploited, they provide different estimates. Combination of solutions to the above mentioned geodetic BVPs in terms of surface integrals with Green’s kernel functions by a spectral method is investigated in this contribution. It is assumed that the first-, second- and third-order directional derivatives of the Earth’s gravitational potential can be measured at the satellite altitude. They are downward continued to the Earth’s surface and converted into height anomalies. Thus, the spectral combination method serves in our numerical procedure also as the downward continuation technique. The spectral combination method requires deriving corresponding spectral weights for all nine estimators. A generalized formula for evaluation of spectral weights for the estimators is formulated. Properties of spectral combinations are investigated in both spatial and spectral domains.

How to cite: Pitoňák, M., Šprlák, M., and Novák, P.: Combination of integral transforms by spectral weighting – an overview  , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9610, https://doi.org/10.5194/egusphere-egu22-9610, 2022.

Displays

Display file