ERE1.2
Changes in energy and material demand as drivers, outcomes and solutions of the climate and environmental crisis

ERE1.2

Changes in energy and material demand as drivers, outcomes and solutions of the climate and environmental crisis
Convener: Jarmo KikstraECSECS | Co-conveners: Volker Krey, Jan StreeckECSECS, Jefim VogelECSECS
Presentations
| Fri, 27 May, 13:20–14:50 (CEST)
 
Room 0.96/97

Presentations: Fri, 27 May | Room 0.96/97

13:20–13:22
13:22–13:28
|
EGU22-6603
|
ECS
|
Highlight
|
Virtual presentation
Corey Lesk, Denes Csala, Robin Krekeler, Sgouris Sgouridis, Antoine Levesque, Katharine Mach, Daniel Horen Greenford, H. Damon Matthews, and Radley Horton

Climate change necessitates an immediate and sustained global effort to reduce greenhouse gas emissions while adapting to the increased climate risks caused by historical emissions. This broader climate transition will involve mass global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, which will result in CO2 emissions from energy and materials use. Yet, the magnitude of these emissions remains largely unconstrained, leaving open the potential for under-accounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO2 emissions embedded in the broader climate transition. For a pathway limiting warming to 2°C, we estimate that selected adaptations will emit ~1.5GtCO2 through 2100. Emissions from energy used to deploy renewable capacity are much larger at ~95GtCO2, equivalent to over two years of current global emissions and ~8% of the remaining carbon budget for 2°C. These embedded transition emissions are reduced by 80% to 20GtCO2 under a rapid decarbonization scenario limiting warming to 1.5°C. However, they roughly double to 185GtCO2 under a low-ambition transition consistent with current policies (2.7°C warming by 2100), mainly because a slower transition relies more on fossil fuels. Under this status-quo, the emissions embedded in the transition total nearly half the remaining carbon budget for 1.5°C. Our results provide the first holistic assessment of the carbon emissions embedded in the transition itself, and suggest that these emissions can be largely minimized through rapid energy decarbonization, an underappreciated benefit of enhanced climate ambition.  

How to cite: Lesk, C., Csala, D., Krekeler, R., Sgouridis, S., Levesque, A., Mach, K., Horen Greenford, D., Matthews, H. D., and Horton, R.: Mitigation and Adaptation Emissions Embedded in the Broader Climate Transition, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6603, https://doi.org/10.5194/egusphere-egu22-6603, 2022.

13:28–13:34
|
EGU22-3119
|
ECS
|
Virtual presentation
|
Meng Jiang, Paul Behrens, Yongheng Yang, Zhipeng Tang, Dingjiang Chen, Yadong Yu, Lin Liu, Pu Gong, Shengjun Zhu, Wenji Zhou, Edgar Hertwich, Bing Zhu, and Arnold Tukker

Economic prosperity is vital to human development, but heavy reliance on material extraction leads to environmental degradation. To successfully decouple growth from degradation, the main drivers of material footprint (MF) must be identified. Here, we focus on MFs in Chinese provinces as well as emerging economies in a global context. We employ a local-global input-output model that considers trade and classified investment/consumption to evaluate the relationship between MF and the Human Development Index (HDI). The results show that China's growing MFs exhibit different development trajectories. While GDP and Human Development Index (HDI) are generally correlated with MFs, some low-income provinces in China have higher MFs per capita than some affluent provinces and advanced economies. We find that capital investments related to buildings, infrastructure, and equipment in China explain the complexity. To explain this further, we distinguish between consumption-driven and investment-driven MFs. We demonstrate the different roles of consumption and investment in the physical economy. An interesting finding is that consumption-driven MFs are generally associated with HDI across Chinese provinces and countries, but investment-driven MFs are not. Such trends are also observed in some developing economies. Capital investment shapes the different trajectories of MFs in rapidly industrializing economies. Given the large infrastructure gaps in emerging economies and post-pandemic investment plans, these underline the need to consider the broader sustainability implications of future investment plans. The concept that investigating different roles of investment- and consumption-associated footprint in input-output framework suggests that modeling future MFs, especially in rapidly industrializing countries, requires a more sophisticated framework. Taking capital investment and stocks formation into the general modeling is important. We conclude by asking two open questions: (1) Does the development of consumption-driven and investment-driven MFs across countries follow a paradigm where the early process of development is high-infrastructure MFs, and then shifts to higher consumption MFs as capital stocks build up? (2) How much investment does an economy need to maintain healthy and green growth?

How to cite: Jiang, M., Behrens, P., Yang, Y., Tang, Z., Chen, D., Yu, Y., Liu, L., Gong, P., Zhu, S., Zhou, W., Hertwich, E., Zhu, B., and Tukker, A.: Distinguishing Capital Investment and Consumption of Material Footprint: A Comparative Analysis between Subnational China and Other Nations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3119, https://doi.org/10.5194/egusphere-egu22-3119, 2022.

13:34–13:40
|
EGU22-11525
|
ECS
|
Virtual presentation
|
Antoine Teixeira and Julien Lefèvre

Paris climate agreement has been a major step forward to limit the global mean temperature rise to below 1.5°C above pre-industrial levels. For many countries, it has led to adopt Net-Zero GHG Emissions (NZE) targets by mid-century. Such objectives imply renewing much existing infrastructures and equipment through low-carbon investments in key sectors (buildings, transport, and power supply). However, there is a risk to overshoot the objectives due to base carbon-intensive materials (steel, cement, etc.). Indeed, material demand is already expected to double by mid-century following economic trends. Deploying intensively low-carbon infrastructure and technologies is expected to increase material demand even more. The size of this surplus is unclear as most energy prospects neglect the feedback between the low-carbon transition and material needs. In addition, most countries restrict their NZE targets to territorial emissions, whereas a carbon footprint approach is essential to account for carbon linkage and industrial relocation toward more carbon-intensive countries. Also, the potential for a fast transition to zero-carbon industrial processes and materials as required is still uncertain, all the more in developing countries producing most materials. The design of stringent climate policy needs a clearer vision of the role of materials in the low-carbon transition to prioritizing mitigation actions.

Our study aims to quantify the link between GHG emissions, low-carbon investments, and the demand for materials. We develop an Input-Output model called MatMat designed (i) to integrate various sets of expertise about low-carbon scenarios and (ii) to track the role of investment demand and material supply in the evolution of the carbon footprint. We apply our method to the french governmental NZE scenario and global mitigation scenarios until 2050. By disentangling key drivers impacting GHG emissions embodied in materials, we show that the carbon footprint of materials could offset national NZE targets due to (i) the indirect material demand embodied in imports and (ii) the potential delay in decarbonizing the material production compared to other sectors, especially abroad. To relieve the material bottleneck for the transition to NZE strategy, we recommend (i) developing material efficiency and circular economy policies, (ii) relocating low-carbon industrial productions, and (iii) supporting imports of clean industrial products at the national level.

How to cite: Teixeira, A. and Lefèvre, J.: The future carbon footprint of materials as a bottleneck for the transition to Net-Zero Emissions – case study on France, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11525, https://doi.org/10.5194/egusphere-egu22-11525, 2022.

13:40–13:46
|
EGU22-755
|
ECS
|
On-site presentation
|
Adriana Gomez Sanabria, Gregor Kiesewetter, Zbigniew Klimont, Wolfgang Schoepp, and Helmut Haberl

The rapidly rising generation of municipal solid waste jeopardizes the environment and contributes to climate heating. Based on the Shared Socioeconomic Pathways, we here develop a global systematic approach for evaluating the potentials to reduce emissions of
greenhouse gases and air pollutants from the implementation of circular municipal waste management systems. We contrast two sets of global scenarios until 2050, namely baseline and mitigation scenarios, and show that mitigation strategies in the sustainability-oriented
scenario yields earlier, and major, co-benefits compared to scenarios in which inequalities are reduced but that are focused solely on technical solutions. The sustainability-oriented scenario leaves 386 Tg CO2eq/yr of GHG (CH4 and CO2) to be released while air pollutants from
open burning can be eliminated, indicating that this source of ambient air pollution can be entirely eradicated before 2050.

How to cite: Gomez Sanabria, A., Kiesewetter, G., Klimont, Z., Schoepp, W., and Haberl, H.: Potential for future reductions of global GHG and air pollutants from circular waste management systems, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-755, https://doi.org/10.5194/egusphere-egu22-755, 2022.

13:46–13:52
|
EGU22-6801
|
ECS
|
On-site presentation
Aishwarya Iyer, Mohamed Aly Etman, Edgar Hertwich, and Narasimha Rao

40% of global energy demand can be attributed to buildings, and 75% of this share is contributed by residential buildings. Developing countries are expected to be the hotspot for future growth in residential energy demand, as many of them expect significant growth in population and urbanization. For instance, 75% of the residential floorspace expected to exist in India in 2030 remained to be constructed in 2015. Thus, a lot of the new energy demand from residential buildings can still be controlled and mitigated. As the country expected to have the largest population in the world by 2025, India has a responsibility to grow sustainably, in a way that aids global climate change mitigation goals. Studying the residential building sector in India thus is a necessary step towards achieving these goals.

Indian residential buildings are diverse, and include informal slums,  low-quality formal buildings, mid-rise formal buildings, and high-rise skyscrapers. Global models for energy efficiency in the residential sector usually consider only one type of building from developing countries, the formal (cement-concrete) type. They create a generalized model, based on the assumption that appliances and thermal comfort standards are the same in most countries. These generalizations do not consider the diverse types of buildings, appliances and thermal comfort standards in India, or any developing country.

This project presents a life-cycle assessment representing all residential building types in India - formal, semi-formal and informal. The semi-formal typology is hitherto missing from building energy modeling literature.  We include and model embodied phase and use-phases separately. The embodied phase study helps understand the energy demand and material demand from the building materials and construction. In the use-phase study, we create detailed models of all residential building typologies, and simulate cooling energy demand results for the city of Mumbai. We study building clusters, to account for the heat transfer and shading effects from the crowded urban environment in India. We also model realistic cooling appliances commonly used in Indian households, like fans and water-based coolers, in addition to air conditioners, and more representative cooling behaviour.

For the first time in this Indian residential life-cycle assessment study, we define three representative typologies for Indian residential buildings. We study clusters and model real appliances used in these homes. We explore some simple material efficiency and energy efficiency strategies through different envelopes, appliances and usage. The goal of this study is to create a preliminary model of what buildings in India are like, and understand how their life-cycle energy demands differ, and some simple options to reduce this demand.

How to cite: Iyer, A., Aly Etman, M., Hertwich, E., and Rao, N.: Representative models and energy and material efficiency strategies for residential buildings in urban India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6801, https://doi.org/10.5194/egusphere-egu22-6801, 2022.

13:52–13:58
|
EGU22-12238
|
ECS
|
Highlight
|
Presentation form not yet defined
Camille Belmin, Peter-Paul Pichler, Guillaume Marois, Shonali Pachauri, and Helga Weisz

In a climate-constrained world, understanding the energy needs to reach universal access to modern energy is critical. This requires making assumptions on future population trajectories, and developments in energy access can affect them. Yet, this feedback has never been accounted for in energy models. Access to modern energy enhances women’s ability to make reproductive choices and leads to fertility decline as it reduces child mortality, improves health, increases women’s access to information, education and employment. In this paper, we assess the household energy requirements to expand energy access while considering the relationship between energy access and fertility, using Zambia as a case study. To do so, we built a micro-simulation model of population projection in which fertility depends on access to modern energy and education level, and projected the electricity and cooking energy needs of the Zambian population to 2050, under different scenarios. Our preliminary results show that while electricity consumption is higher in the universal access scenario compared to the baseline scenario, total energy demand is 67% lower, partly due to strong decline in the use inefficient traditional cooking fuels. Reduced population growth due to expanded energy access and education accounts for 15% of this reduction in rural areas, and 8% overall. Although the challenge of achieving universal access to modern energy seems daunting, our results suggest that this goal could be co-beneficial to achieving climate goals. Our study also reveals that accounting for the energy-population nexus in energy models would scale down the currently assumed energy needs to ensure decent well-being for all.

How to cite: Belmin, C., Pichler, P.-P., Marois, G., Pachauri, S., and Weisz, H.: Reducing the energy demand to achieve universal access to modern energy while ensuring women’s well-being: How much energy and carbon can be saved by fertility decline?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12238, https://doi.org/10.5194/egusphere-egu22-12238, 2022.

13:58–14:06
14:06–14:12
|
EGU22-3310
|
On-site presentation
Aisha Bello-Dambatta, Roberta Bellini, and Prysor Williams

We recently launched a citizen science project on household water-energy efficiency as part of the cross-border, interdisciplinary Dŵr Uisce research project on improving the energy performance and long-term sustainability of the water sectors in Ireland and Wales. Citizen science is emerging as a critically important means of democratising science by engaging the public to contribute to the creation of solutions to some of the most important topical global challenges like climate change.

The main aim of the citizen science project is to engage with and collaborate with the public to improve understanding of water-related energy use in Irish homes to help assess the most effective means of improving the efficiency and sustainability of household water-related energy use through water use efficiency.

The project consists of two key parts: a cross-sectional survey that assessed the current public perception of household water and water-related energy use, followed by a longitudinal study where participants record water use at home to assess the actual current household micro-component water use and associated water-related energy use. The findings of the project will be used to quantify the potential of climate action through household water-energy use efficiency in reducing emissions and costs, and to develop up-to-date best practice guidelines for climate action from household water use efficiency.

We will be presenting the results of the cross-sectional survey on current perception of household water and water-related energy use. The survey, open to all households in the Republic of Ireland, ran for 7 weeks in September and October 2021 and a prize draw was used to incentivise participation. We received a total of 265 responses of which 23 responses were partially completed responses (8.7%); however, data available for non-completed responses does not indicate any difference compared to completed responses, and it may well be possible some non-completed responders went on to restart the survey after it timed out. The survey consisted of 60 questions grouped by general questions on household water use (e.g., water provision, and water and energy metering) and household water use types (bathroom, kitchen, cleaning and laundry, and outdoor water use). Itwas designed to be disaggregated by the Irish Central Statistics Office (CSO) household demographic and socio-economic census as a segmentation framework: location, household type, household age, housing status, employment status, household income and household size (disaggregated by age). The responses are found to be generally representative compared with the most recent 2016 census data in terms of location, employment status, housing status, household income, household type, and household age.

How to cite: Bello-Dambatta, A., Bellini, R., and Williams, P.: Energy efficiency through household water use efficiency: a survey on public perception of household water and water-related energy use in Ireland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3310, https://doi.org/10.5194/egusphere-egu22-3310, 2022.

14:12–14:18
|
EGU22-3545
|
Presentation form not yet defined
Ricardo García-Herrera, Jose M Garrido-Pérez, David Barriopedro, and Carlos Ordóñez

 

The need to balance supply and demand has become an important policy concern in a context of a projected growth in global energy consumption. Based on the demand–temperature relationship and the ongoing global warming, climate change is expected to alter the regional patterns of electricity demand. This work evaluates the influence that climate change could exert on electricity demand patterns in Spain conditioned on the level of warming, with special attention to the seasonal occurrence of extreme demand days. For this purpose, assuming the currently observed electricity demand–temperature relationship holds in the future, we have generated daily time series of pseudo-electricity demand from the recent past until the late twenty-first century by using simulated temperatures from statistical downscaling of global climate model experiments.

We have found that, despite the minor warming effects on the median values of daily electricity demand, the mean values as well as the frequency and severity of extreme electricity demand days are expected to increase significantly in Spain, even for low levels of regional warming. Moreover, the occurrence of these extremes will experience a seasonal shift from winter to summer due to the projected temperature increases in both seasons. Under a high radiative forcing scenario of greenhouse gas emissions (RCP8.5), the extended summer season (June–September) will concentrate more than 50% of extreme electricity demand days by mid-century, increasing to 90% before the end of the century. Since these events will often be related to extreme heat, there could also be side effects that jeopardize the electricity infrastructure. Thus, this result should be considered by energy planners to ensure power supply and improve the effectiveness of the energy system.

Finally, we have shown that future changes in electricity demand could have considerable spatial heterogeneity over the country, which has strong implications for the management of the electricity system. While Spain is warming up faster than the global mean, there are some regions that will be exposed to lower warming than others. In particular, northwestern Spain will experience the seasonal shift later than the rest of the country due to the relatively mild summer temperatures and lower projected warming there. 

How to cite: García-Herrera, R., Garrido-Pérez, J. M., Barriopedro, D., and Ordóñez, C.: Impact of climate change on Spanish electricity demand, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3545, https://doi.org/10.5194/egusphere-egu22-3545, 2022.

14:18–14:24
|
EGU22-689
|
ECS
|
On-site presentation
|
Cathie Wells, Paul Williams, Nancy Nichols, Dante Kalise, and Ian Poll

With full satellite coverage of transatlantic flight routes now a reality, situational awareness is no longer a limiting factor in planning trajectories. This extra freedom allows us to consider moving from the current Organised Track System to Trajectory Based Operations, in order to limit fuel use and thus reduce emissions.

In all parts of this research, flights between New York and London, from 1st December, 2019 to 29thFebruary, 2020 are considered. Average daily winds and temperatures are taken from a global atmospheric re-analysis dataset.

 

We first use optimal control theory to find the minimum time trajectories through daily wind fields. The aircraft is assumed to fly at Flight Level 340 with airspeeds ranging from 200 to 270 m s-1. Since fuel burn and greenhouse gas emissions are directly proportional to the product of time of flight and airspeed, this quantity, air distance, is used as a measure of route fuel efficiency. Minimum time air distances are compared with actual Air Traffic Management tracks, giving potential savings ranging from 0.7 to 16.4%. 

 

However, minimum time routes are not always practical. Airlines and airports require trajectories that will minimize fuel burn and thus carbon dioxide emissions, whilst adhering to a rigid timetable. To address this we again apply optimal control theory, but this time to find minimum fuel routes through the same wind fields. 

The control variable is expressed as a set of position-dependent aircraft headings, with the optimal control problem solved through a reduced gradient approach.  A second formulation is considered, wherein both heading angle and airspeed are controlled.  By comparing fuel burn for each of these scenarios, the importance of airspeed in the control formulation is established. 

 

Thus large reductions in fuel consumption and emissions are possible immediately, by planning time or fuel minimal trajectories, without waiting decades for incremental improvements in fuel-efficiency through technological advances.

How to cite: Wells, C., Williams, P., Nichols, N., Kalise, D., and Poll, I.: Reducing aviation emissions: investigating time minimal and fixed time trajectories for transatlantic flights., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-689, https://doi.org/10.5194/egusphere-egu22-689, 2022.

14:24–14:30
|
EGU22-2917
|
Virtual presentation
Daniel Ayuk Mbi Egbe, David Finger, and Reinhold Lang

Green hydrogen has been identified as a key energy carrier to decarbonize the main emission sectors. In the industry sectors hydrogen can be used as a reducing agent in the metallurgy, in the transportation sector hydrogen can be used as a fuel and in the energy sector hydrogen can be used as an energy storage option. However, the production of hydrogen is energy intensive and can only lead to a reduction of greenhouse gas emissions if the primary energy source is renewable, carbon-free, and has a low ecological footprint. Wind, geothermal, solar and hydropower have been identified as key sources for sustainable and green hydrogen production, especially if excess energy is used for the hydrogen production. Unfortunately, large scale renewable energy production is frequently located at distant location from main consumers. We assess the challenges and opportunities of two remote production hot spots for sustainable and green hydrogen, namely Iceland and northern Africa. We will present different methods, ranging from energy modelling, life cycle assessment, to stakeholder analysis to present a holistic picture of sustainable green hydrogen production. Based on our preliminary results, we conclude that Iceland as well as northern Africa have the potential to produce sustainable and green hydrogen.

How to cite: Egbe, D. A. M., Finger, D., and Lang, R.: The opportunities and challenges of Green Hydrogen from Africa and Iceland to decarbonize the industries, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2917, https://doi.org/10.5194/egusphere-egu22-2917, 2022.

14:30–14:36
|
EGU22-6658
|
ECS
|
Virtual presentation
Louise Anne Klotz, Oliver Sonnentag, and Mary Kang

Arctic and Boreal regions are experiencing major natural and anthropogenic disturbances, leading to significant changes in ecosystem composition, structure and functioning in recent decades. Therefore, it is crucial to understand the main drivers of change, as well as the ecosystem impacts on natural and cultural resources, human health and the climate system. Large numbers of oil and natural gas wells are being drilled in Arctic and Boreal regions; however, the number and distribution of wells drilled in these regions over time is not well documented and understood. Moreover methane emissions and relationship with land cover and land cover change have not been analyzed. Using oil and gas well databases from provincial, territorial and state agencies in Canada and the U.S., we analyze drilled oil and gas wells throughout the study period (1984-2014) and in relation to land cover distribution and change across the Arctic-Boreal region of western North America. We find 254,998 wells, mostly located in Alberta (211,747) and British Columbia (35,012), in Arctic and Boreal regions of Canada and the U.S. We characterize the wells, based on data provided in the database, according to well production type (gas or oil and gas) and well abandonment status (active, abandoned, abandoned and plugged) and find that annual well drilling has increased from 269 to 8599 from 1984 to 2014. We estimate emissions from abandoned oil and gas wells in the study domain to be 40 – 148% of Environment and Climate Change Canada’s national estimate for methane emissions from abandoned oil and gas wells in 2018. Finally, using the annual land cover maps for 1984-2014, we find the number of drilled wells in each land cover class throughout the years. We identify significant increases in number of wells drilled between 1984-1999 and 2000-2014 in evergreen forest, sparsely vegetated and barren land cover classes. 

How to cite: Klotz, L. A., Sonnentag, O., and Kang, M.: Methane and Environmental Impacts of Abandoned Oil And Gas Wells in the North American Arctic-Boreal Region, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6658, https://doi.org/10.5194/egusphere-egu22-6658, 2022.

14:36–14:42
|
EGU22-12341
|
Virtual presentation
Alicja Kot-Niewiadomska and Krzysztof Galos

The European Green Deal (EGD) is a development strategy aimed at transforming the European Union into a the world's first climate-neutral area. The way to achieve this goal is a low-emission energy transformation, which should end in 2050, but the first milestones should be achieved already in 2030. Following the dynamically accelerating EU climate and energy trends will be a significant transformation challenge for Poland. The strategies proposed in the EGD will have a significant impact on key areas of the national economy (energy system, construction, industry, transport, households), including the level of supply and demand for many mineral raw materials. The most visible changes will be registered in the group of fossil fuels, but also regarding metallic raw materials, which will be associated with the development of advanced technologies for renewable energy sources.

A crucial breakthrough in the Polish energy transformation was the country's accession to the declaration of resignation from the coal exploitation, which Poland signed during the World Climate Summit in 2021. According to the social contract, the last hard coal mine in Poland will be closed by 2049. Thus, for the first time Poland was on the list of countries that officially confirm the withdrawal from coal. The resignation from this raw material is also included in the Polish Energy Policy 2040, according to which hard coal will be replaced by natural gas, nuclear energy and renewable energy. As a consequence, an increase in demand for both natural gas and nuclear fuels, should be expected. It should be noted that Poland does not have its own fossil nuclear fuel sources, and the domestic extraction of natural gas covers only 13% of the demand. In both cases an increasing demand for fuels should be assumed in the coming decades. Crude oil is also in the group of fuels sensitive to changes resulting from EGD. The main sector of the Polish economy in which petroleum products are consumed is transport. The development of electromobility, the use of biocomponents and alternative fuels will be the most important factors influencing changes in the level of demand for crude oil in the next 10-20 years.

The EGD strategy will play an important role in changing the structure of demand for metallic raw materials, both in terms of their quality and quantity. It should be emphasized that Poland has the largest copper ores deposits in Europe. In recent decades, the Polish production has accounted for nearly 50% of the total copper ore concentrates production and for more than 20% of the total refined copper production in the EU. Development of demand for this raw material is related to the scale of use of refined copper, among others in renewable energy (wind power and photovoltaics) and electromobility, which are the pillars of EGD. Unfortunately, practically all other metals important in development of renewable energy sources in Poland (e.g. cobalt, nickel, manganese, lithium, REEs, silicon) are completely deficit for the Polish economy due to lack economically feasible domestic sources. 

How to cite: Kot-Niewiadomska, A. and Galos, K.: Polish demand and supply of mineral raw materials  in the light of the European Green Deal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12341, https://doi.org/10.5194/egusphere-egu22-12341, 2022.

14:42–14:50