GD7.2
Evolution of cratonic lithosphere: Variability, geodynamic interactions and resource potential

GD7.2

EDI
Evolution of cratonic lithosphere: Variability, geodynamic interactions and resource potential
Co-organized by GMPV3/SM5/TS13
Convener: Peter HaasECSECS | Co-conveners: Nicolas Luca CelliECSECS, Andrea Tommasi
Presentations
| Thu, 26 May, 13:20–15:55 (CEST)
 
Room -2.91

Presentations: Thu, 26 May | Room -2.91

Chairpersons: Peter Haas, Nicolas Luca Celli
13:20–13:25
13:25–13:35
|
EGU22-6819
|
solicited
|
Highlight
|
Virtual presentation
Graham Pearson

The term craton has a complex and confused etymology. Despite originally specifying only strength and stability – of the crust – the term craton has seen widespread use as referring to a region characterised by crustal basement older than 2.5 Ga, despite the fact that some such “cratons” no longer possess their deep lithospheric root and have geological histories that contnue well beyond the Archean/Proterozoic boundary.  Viscous, buoyant lithospheric mantle roots are key to the survival and stability of continental crust. Here we use a revised craton definition (Pearson et al., 2021, Nature), that includes the requirement of a deep (~150 km or greater) and intact lithospheric root, to re-examine extent and character of regions defined as crtons. The revised definition has a nominal requirement for tectonic stability since ~ 1 Ga and recognises that some regions are “modified cratons” – having lost their deep roots, i.e., they may have behaved like cratons for an extended period but subsequently lost much of their stabilising mantle roots during major tectono-thermal events. In other words, despite being long-lived features, cratons are not all permanent. The 150 km lithospheric thickness cut-off provides an optimal match to crustal terranes with 1 Ga timescale stability.

We examine the processes involved in craton ormation and growth. Seismology can help to define the lateral extent of today’s cratons, but a detailed understanding of the regional geological history, kimberlite eruption ages and geothermal conditions is required to evaluate periods of past diamond potential, no-longer evident today. 

How to cite: Pearson, G.: What are cratons?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6819, https://doi.org/10.5194/egusphere-egu22-6819, 2022.

13:35–13:42
|
EGU22-2977
|
ECS
|
On-site presentation
|
Janneke de Laat, Sergei Lebedev, Bruna Chagas de Melo, Nicolas Celli, and Raffaele Bonadio

Australia has a long a complex geological history, spanning from the early Archean to the present day. Tomographic models can help us better understand the evolution of Australia by imaging the seismic structure of the crust and underlying mantle. We present a new S-wave tomographic model, Aus22, computed using a very large dataset of 0.9 million seismograms. The dataset includes all publicly available broadband data and yields the densest possible coverage across the hemisphere centred at the Australian continent, with sparser coverage elsewhere. Aus22 is computed using a three-step inversion procedure: 1. waveform inversion, 2. tomographic inversion and 3. outlier analysis. The model is validated by resolution tests and, for particular locations with notable differences with previous models, by independent inter-station measurements of surface-wave phase velocities. The new tomography resolves the structure of the Australian Plate and its boundaries in great detail. Cratonic lithosphere underlies nearly all of western and central Australia and shows substantial lateral heterogeneity. The highest seismic velocities are observed in the central-west portion of the continent, including the West and South Australian Craton. The North Australian Craton can be distinguished by a slightly lower seismic velocity, especially in its southern part. The cratonic lithosphere below the North Australian Craton extends northwards offshore through the Gulf of Carpentaria and the Arufa and Timor Sea and terminates at the southern Banda Arc and the New Guinea Fold-and-Thrust Belt, marking the northern boundary of the Australian Plate. The eastern boundary of the cratonic lithosphere is close, in most places, to the geologically defined Tasman Line and provides a new, deep-lithospheric definition of this line. East of this boundary, the lithosphere transitions to thin, warm lithosphere underlying the volcanically active east of the continent. This transition is sharp in the north, where it is located just west of the Georgetown Inlier, whereas an area of moderately thick, transitional lithosphere is present in the south-central part of the continent.

How to cite: de Laat, J., Lebedev, S., Chagas de Melo, B., Celli, N., and Bonadio, R.: Imaging the full extent of the Australian cratonic lithosphere using waveform tomography with massive datasets., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2977, https://doi.org/10.5194/egusphere-egu22-2977, 2022.

13:42–13:49
|
EGU22-10000
|
ECS
|
On-site presentation
|
Magdala Tesauro, Francesca Maddaloni, Taras Gerya, Alberto Pastorutti, Carla Braitenberg, and Damien Delvaux

The Congo basin (CB), also named Cuvette Centrale for its bowl shape, occupies a large part of the Congo Craton, which is composed of several amalgamated Archean cratonic blocks, surrounded by Paleo- and Meso- Proterozoic mobile belts. It started to form from a rift phase, during the late Mesoproterozoic (about 1100 Myr). This age, obtained from the interpretation of the almost 3000 km of seismic reflection profiles, is older than that assumed in previous studies and corresponds to a time prior to that of Rodinia assembly. In this tectonic scenario, the CB formation can be related to one of the final phases of the supercontinent Columbia break-up, resulted in several-failed rift. The extensional phase that produced the formation of a very heterogeneous basement, characterized by several basins and highs, NW-SE aligned, could have been likely the effect of the action of a slow multi-divergent velocity (i.e., multi-directional extension) on a cratonic lithosphere, which have induced the initial subsidence of the CB in a weaker part of the craton. The amalgamation of the cratons, composing the basement of the CB, likely left a weak zone in the suture areas, corresponding to the central part of the CB, which could have been more easily deformed, under the influence of tectonic stresses.

We implemented 3D geodynamic models, using the thermomechanical I3ELVIS code to test the hypothesis that the complex structures of the CB basement are the product of a slow multi-divergent velocity, acting on a cratonic area. The results of the numerical models are used to implement forward gravity models to estimate the temporal variations of the gravity effect of the tectonic structures formed during the simulations. Finally, we compared the forward gravity models with the present-day gravity field, in order to demonstrate the consistency between the modelled and observed main structures of the CB. The main results, in terms of topography variations, well reproduce the first-order basement depth variations of the CB. In particular, they produce the formation of an almost circular depressed area in the central part of the model, intersected by two strongly subsided elongated structures, orthogonal each other, whose topography tend to increase with time. The comparison between the forward gravity models and the observed gravity anomalies (gravity disturbance variations), shows that two fields are characterized by a similar alternation of weak positive and strong negative gravity anomalies. However, the modelled anomalies show a smoother trend and higher amplitude, being related to the density and topography variations induced by the upwelling of the asthenosphere, while the observed gravity field is strongly influenced by the sedimentation not simulated in our model.

How to cite: Tesauro, M., Maddaloni, F., Gerya, T., Pastorutti, A., Braitenberg, C., and Delvaux, D.: Effects of multi-extensional tectonics in a cratonic area: 3D numerical modeling and implications for the Congo Basin, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10000, https://doi.org/10.5194/egusphere-egu22-10000, 2022.

13:49–13:56
|
EGU22-5438
|
Virtual presentation
Rodeck Patrick Alan Loemba, Legran Juldit Espoir Plavy Ntsiele, Urbain Fiacre Opo, Carmel Bazebizonza Tchiguina, Hardy Medry Dieu-Veill Nkodia, and Florent Boudzoumou

Most interpretations of the Archean rocks in the Central Congo Craton have only focused on data from Cameroon and Gabon, few of them have included data from the Ivindo region in northwest Republic of Congo. This study presents for the first time a regional interpretation of the Archean rocks of the Congo craton from data on granitoids of the Ivindo region. Modal compositions vary between quartz-rich granitoids or pegmatite, granodiorites, granites and tonalites. These rocks are metaluminous and peraluminous (~0.8≤A/CNK≤~1.3) and define magmatic lineages that are predominantly calc-alkaline, tholeiitic, and rarely highly potassic calc-alkaline. REE diagrams show that these rocks are rich in rare earth elements (LREE) and large ionic lithophile (LILE), while exhibiting significant negative anomalies in Nb-Ta, and in Ti. Such geochemical signatures indicate that these granitoids formed possibly in a subduction tectonic setting. These geochemical signatures are comparable with the Dharwar, North China, and Pilbara cratons, also in similar Archean cratons.

The U-Pb ages based on zircon indicate that tonalites were amplaced at (2891.2 ± 10.6 and 2820.37 ± 6.23 Ma), pegmatite were amplaced at (2878.2 ± 13.6 and 2891.0 ± 12.6 Ma), granodiorite were ampleced at (2828. 98 ± 6.23 Ma) and granite were ampleced at (2430.19 ± 8.11 Ma). Thesse periods of magmatisme describe here revels the magmatic history of the Archean granitoids of the Congo craton in the Ivindo Bassement from 3085 ± 21.6 and 2430.19 ± 8.11 Ma.

Keywords: Archean, Crustal growth, Granitoids, Ivindo region, Congo craton, Republic of Congo.

 

 

How to cite: Loemba, R. P. A., Ntsiele, L. J. E. P., Opo, U. F., Bazebizonza Tchiguina, C., Nkodia, H. M. D.-V., and Boudzoumou, F.: Crustal growth of Archean and early Proterozoic granitoids of the Ivindo region in the Souanké and Bomalinga areas from Congo Craton (North-West Republic of Congo), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5438, https://doi.org/10.5194/egusphere-egu22-5438, 2022.

13:56–14:03
|
EGU22-7310
|
ECS
|
On-site presentation
Estelle Eric Fosso Teguia M, Jörg Ebbing, and Peter Haas

We present results of cluster analysis and geophysical modelling of the West and Central African rift system, where we integrate seismological and satellite data. For a description of lithospheric domains, two different methods based on seismic tomography and satellite gravity data have been used. First, the terracing method using the shape index, has been applied to the gravity field in order to enhance the signal of the large-scale tectonic units. In addition, the K-means cluster method (which is an unsupervised machine learning algorithm) has been applied to a seismic tomography model over the area.

Both models are compared and interpreted towards similarities and differences. The preliminary analysis based on K-means clustering of seismic tomography shows that the West and Central African rift system and its surroundings can be divided into at least three clearly distinct tectonic domains: The Northern part of the Congo craton, the Eastern part of the West African craton and an area in between. In addition, the preliminary analysis of the terracing of satellite gravity data, confirms the location of both the Congo and the West African craton, but also splits the area in between into two known tectonic units, the Southern part of the Saharan meta-craton and the West and Central African rift system in the center.

The cluster analysis is also pointing to differences at crustal and upper mantle level and is the first step towards the evolution of a lithospheric scale model. In the model, we integrate our tectonic domain analysis with the existing seismic Moho depths estimate and other information.

How to cite: Fosso Teguia M, E. E., Ebbing, J., and Haas, P.: Lithospheric domains of the West and Central African rift system based on Terracing and Cluster analysis, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7310, https://doi.org/10.5194/egusphere-egu22-7310, 2022.

14:03–14:10
|
EGU22-3561
|
ECS
|
Presentation form not yet defined
|
Mohamed Sobh, Christian Gerhards, and Islam Fadel

South African lithosphere is a mosaic of the best-preserved and exposed crustal blocks, assembled in the early to late Archean and then modified by a series of major tectono-thermal events, both of Precambrian and Phanerozoic age. Understanding the thermal and compositional structure of the South African lithosphere provides crucial information for the causes and processes of lithospheric stability and modification.

The lithosphere's effective elastic thickness (Te) is a proxy for mechanical strength that can be used to constrain lithospheric rheology and better understand how surface deformation affects deep Earth processes.

In this study, we calculate the admittance and coherence for southern Africa using topography and Bouguer gravity data from the GOCE satellite dataset. The admittance and coherence are then jointly inverted to estimate the spatial variations in southern African elastic thickness, by applying a wavelet transform in a probabilistic Bayesian framework.

Unlike other Cratonic regions, the low effective elastic thickness values and the shallow Curie depth estimated along the Kaapvaal Craton, demonstrate that lithospheric strength is influenced by regional thermo-chemical mantle upwelling dominated by composition, rather than just the continental geothermal state.

The lateral heterogeneity of Te across the Kaapvaal craton indicates that the Kaapvaal may not be a uniformly rigid craton and the modification is related to metasomatism and plume activity.

 

How to cite: Sobh, M., Gerhards, C., and Fadel, I.: Mechanical Strength of Southern African’s Lithosphere from a Joint Inversion of Bouguer Gravity and Topography and its Uncertainty, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3561, https://doi.org/10.5194/egusphere-egu22-3561, 2022.

14:10–14:17
|
EGU22-8441
|
Presentation form not yet defined
Bruna Chagas de Melo, Sergei Lebedev, Nicolas Celli, and Marcelo Assumpção

South America presents a diverse tectonic set-up, with an active subduction margin on the western border and a stable continental interior to the east. In the ancient stable part, two main cratonic domains can be separated. The Amazonian, consolidated in Archean-Paleoproterozoic times, and the Brasiliano, marked by Neoproterozoic events related to the West Gondwana assembly. In each domain, geology and geophysical methods separate different cratonic nuclei. However, some nuclei's detailed lateral and vertical extent and even existence are debated.

In seismic tomography, we can define regions of cratonic lithosphere due to the shear wave sensitivity to temperature and composition. However, until recently, seismic data sampling in South America was highly scarce and uneven. Here, we assembled all freely available seismic data globally, with the addition of the FAPESP "3-Basins Thematic Project" temporary network. After selecting all paths crossing the hemisphere centred at South America and performing an automatic outlier rejection, we obtain a massive dataset of ~1 million waveform fits, constraining our final model.

We compute a new S-velocity tomographic model of the upper mantle of South America and surrounding oceans using the Automated Multimode Inversion of surface, S- and multiple S-waves. The increase in the data coverage of the model combined with the optimized tuning of the inversion parameters on the continent allows us to identify for the first time the fine details present in the cratonic structure. We observe that regions of thinner lithosphere inside cratons correspond to areas of rifting in previous tectonic cycles. Inside the boundaries of the Amazon craton, we image two cratonic blocks, separated by the Amazon basin. In this area, an aborted rift system preceded the formation of the Amazon basin in the Neoproterozoic, and rift reactivation occurred with the break-up of Pangea in the Mesozoic. Similarly, in the São Francisco Craton, we image a significantly thinner lithosphere in the Paramirim Aulacogen area, a Paleoproterozoic intracontinental rift system. These observations show that the continental lithospheric topography is closely related to upper mantle dynamic processes. We also image high-velocity lithospheric blocks under sedimentary basins. East of the Amazon craton, we image a high-velocity anomaly beneath the Parnaíba block, and under the Paraná basin the fragmented Paranapanema block lithosphere. Finally, by imaging the boundary of the cratonic units in detail, we can observe that magmatic events and large igneous provinces are distributed around the thick roots of the cratons, where the lithosphere is thinner.

How to cite: Chagas de Melo, B., Lebedev, S., Celli, N., and Assumpção, M.: Detailed Structure of the South American Cratons Using Waveform Tomography, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8441, https://doi.org/10.5194/egusphere-egu22-8441, 2022.

14:17–14:24
|
EGU22-13111
|
ECS
|
Virtual presentation
|
Ana Carolina Fonseca, Simone Cruz, Tiago Novo, Zhiyuan He, and Johan De Grave

Lithosphere of cratons and orogens generally reacts differently to tectonic events. Although these differences are mostly clear during the orogenic phases, understanding how they respond to tectonic reactivation is still challenging. Here, we report the first detailed apatite fission-track (AFT) study pinpointing the gradual transition between cratonic and orogenic lithosphere, using the case study of the São Francisco craton (SFC) and the adjacent Araçuaí-West Congo Orogen (AWCO), eastern Brazil. The collision that built the AWCO partially affected the inherited rift structures of the Paramirim Aulacogen, embedded in the São Francisco-Congo paleocontinent. Our data reveal a differential Phanerozoic exhumation between closely interspaced areas affected and not affected by the AWCO deformation. Samples from the SFC present slow and protracted basement cooling during the Phanerozoic, while samples from the orogen display rapid exhumation since the Eocene. An intermediate ~N-S zone of c.40 km shows lower magnitude basement cooling during the Cenozoic, possibly because the propagation of AWCO deformation decreases towards the craton interior. Within the orogen, the Rio Pardo salient is the main reactive structure and probably results from the deformation of a master fault, inherited from its precursor rift. Here, we show how the magnitude of Phanerozoic denudation may be deeply associated with previous events of lithosphere weakening.

How to cite: Fonseca, A. C., Cruz, S., Novo, T., He, Z., and De Grave, J.: Differential exhumation of cratonic and non-cratonic lithosphere revealed by apatite fission-track thermochronology along the edge of the São Francisco craton, eastern Brazil, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13111, https://doi.org/10.5194/egusphere-egu22-13111, 2022.

14:24–14:31
|
EGU22-609
|
ECS
|
Presentation form not yet defined
Anirban Mitra and Sukanta Dey

Despite the influence of several extrinsic parameters that inhibits the use of trace element composition of detrital zircon grains in inferring their host rocks, workers had overcome many related problems and particularly constrained zircon/bulk rock partition co-efficient at least for different granitoids, for example. Based on these kind of progress and few other fundamental works, we have tried to apply trace element composition of detrital zircon grains retrieved from some basal quartz pebble conglomerate units and orthoquartzites of Dharwar craton in studying the crustal evolution pattern of this craton, specifically in terms of its changing crustal thickness with time. In this study, after categorising the pristine zircon grains identified by their La>1, Pr>1 and LREE-I<30 values, the values of their LREE/HREE ratio (measured by their Lu/Nd ratio) are used to infer the temporal variation of crustal thickness within this craton. Here, the zircon grains show depressed values of LREE/HREE ratio manifested in their higher Lu/Nd ratio which possibly attests the absence of thicker continental crust in Dharwar craton between 3.4-3.1 Ga. We would also try to establish our observation regarding the secular evolution of crustal thickness of Dharwar craton with the help of other bivariate plots using the other trace elemental proxies. Our result stand in contradiction with the finding of other workers who, with the help of geophysical parameters, inferred the greater thickness of continental crust attested in WDC within the said time frame  

How to cite: Mitra, A. and Dey, S.: Tale of crustal evolution of western Dharwar craton in Paleo-to- Meso Archean time: Insights from trace elemental composition of detrital zircons of some selected quartzite units., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-609, https://doi.org/10.5194/egusphere-egu22-609, 2022.

14:31–14:38
|
EGU22-9048
|
Virtual presentation
Avishek Adhikari, Ankita Nandi, Shreya Mukherjee, and Ravikant Vadlamani

Petrogenetic processes of the Archean (>2500 Ma) andesitic rocks are strongly debated because of their distinct geochemical similarities to the modern subduction zone andesites contrast with sparse evidence for Archean lithospheric subduction. Therefore, processes responsible for generation of the andesitic rocks preserved in an Archean craton would potentially place constraints on the Archean geodynamic process. The Western Iron Ore Group (W-IOG) volcano-sedimentary succession in Singhbhum craton is overlain by unmetamorphosed Jagannathpur amygdular volcanics (basaltic andesite – andesite). The W-IOG preserves deformed lower greenschist-facies tholeiitic basalt and calc-alkaline basaltic andesite interlayered with BIF and Fe-Mn-rich phyllite and shale. Previously, petrogenesis of the basaltic andesite in W-IOG was interpreted as having formed in a subduction zone whereas the origin of Jagannathpur volcanics has remained unclear. Therefore, geochemical modelling using trace elements and Sm–Nd geochronology of these basaltic-andesitic rocks were performed to constrain the petrogenetic process and timing of volcanic eruption of these metavolcanic rocks.

Primitive mantle-normalized trace element patterns, chondrite-normalized REE patterns and Nb/Th, Zr/Th ratios of the W-IOG and Jagannathpur basaltic andesite – andesite show enrichment in large ion lithophile elements (LILE), light rare earth elements (LREE), Zr and Th indicating incompatible trace element enrichment in their petrogenesis. The W-IOG tholeiitic basalt is depleted in LILE, LREE, Zr and Th and an absence of Nb-Ta-Ti anomalies that imply a depleted mantle source. The W-IOG basaltic andesite yield an isochron age of 3041±94 Ma (2SD) with Ndi = 0.50875±0.00009, MSWD = 0.62 (n=10) and εNd(T) = +1.1±1.6; whereas the tholeiitic basalt yielded an isochron age of 3050±71 Ma (2SD) with Ndi = 0.50885±0.00010, MSWD = 0.17 (n=10) and εNd(T) = +3.3±1.6. Geochemical modelling indicates that the W-IOG basaltic andesite could have been generated by 20-40% assimilation-fractional crystallization (AFC) (r=0.2, ratio of rate of assimilation to the rate of fractional crystallization) of primitive tholeiitic magma that is derived by 14% partial melting of depleted MORB-type mantle (DMM) under spinel lherzolite depth in an extensional setting. The Jagannathpur basaltic andesite – andesite yielded an Sm-Nd isochron age of 2799±67 Ma (2SD) with Ndi = 0.50895±0.00006, MSWD = 0.36 (n=16) and εNd(T) = -1.1±0.5 and represents one of the oldest Neoarchean intracratonic flood basaltic volcanism. These basaltic andesite – andesite could have been produced by 20-60% AFC (r=0.2) of hybrid magma during lithospheric extension. Generation of the hybrid magma has been modelled by two end member components involving ~18% partial melt of enriched-DMM that interacted with low degree (~5%) partial melt of metasomatised subcontinental lithospheric mantle (SCLM). In addition, our geochemical model results suggest that Meso- to Neoarchean basaltic andesite – andesite rocks in Singhbhum craton were not generated by 1) assimilation of crustal material with primitive tholeiitic magma without fractional crystallization, 2) direct partial melting of different enriched mantle reservoirs (enriched-DMM, EM I, EM II) and mantle wedge peridotite in a subduction environment and 3) partial melting of solely metasomatised SCLM.

How to cite: Adhikari, A., Nandi, A., Mukherjee, S., and Vadlamani, R.: Modelling petrogenesis of Meso- and Neoarchean andesitic rocks: an example from Singhbhum craton, India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9048, https://doi.org/10.5194/egusphere-egu22-9048, 2022.

14:38–14:50
Coffee break
Chairpersons: Nicolas Luca Celli, Peter Haas
15:10–15:20
|
EGU22-6102
|
solicited
|
Highlight
|
Virtual presentation
Heather Bedle, Catherine Cooper, and Carol Frost

In a geodynamic, geological and geophysical review of global Archean cratons, we find that the survival of Archean cratons depends on the initial conditions of their formation, as well as the tectonic processes to which they were exposed.  In a sense, we must consider both their nature and how they were nurtured.  In a review of existing literature and models, we use stability regime diagrams to understand the factors that contribute to the intrinsic strength of a craton: buoyancy, viscosity, and relative integrated yield strength. We find that cratons formed in the Archean when thermal conditions enhanced extraction of large melt fractions and early cratonization promoted the formation of stable Archean cratonic lithosphere.  In terms of the cratons' nurturing, processes that may have modified and weaken cratonic lithosphere include subduction and slab rollback, rifting, and mantle plumes, as these processes introduced materials and conditions that warmed and metasomatized the lithosphere.  Examining four Archean cratons that are more stable, and four that are categorized as modified or destroyed, we note that continental lithosphere that was cratonized prior to the end of the Archean has more potential to survive deformation during the last 500 My. Although, the survivability of these cratons is highly dependent on their unique positions relative to larger scale tectonic processes, such as subduction.   We also observe that once an Archean craton begins to undergo even a small amount of modification, it is more likely to continue to be modified, as it loses the preservation advantage that it had upon birth.

How to cite: Bedle, H., Cooper, C., and Frost, C.: Nature vs. Nurture: Understanding the survival of Archean cratons, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6102, https://doi.org/10.5194/egusphere-egu22-6102, 2022.

15:20–15:27
|
EGU22-2631
|
ECS
|
On-site presentation
|
Björn Heyn and Clinton Conrad

Deep-seated upwellings within the Earth’s mantle, also known as mantle plumes, affect the Earth’s surface by inducing (large-scale) volcanism, initiating continental breakup and increasing surface heat flow. Plume-lithosphere interaction may also generate lithospheric erosion at the base of the tectonic plates. It is therefore important to understand the past positions and movements of mantle plumes relative to the surface plates. However, while hotspot tracks beneath thin oceanic lithosphere are visible as volcanic island chains, the plume-lithosphere interaction for thick continental or cratonic lithosphere often remains hidden due to the lack of volcanism.

To identify plume tracks with missing volcanism, we characterize the relationship and timing between plume-lithosphere interaction and associated surface heat flux anomalies by using numerical models of mantle convection. Our results indicate a relation between lithospheric thinning and surface heat flux anomaly, which is independent of geometry and can be approximated analytically. We have confirmed this close link between basal erosion of the lithosphere and surface heat flux anomaly using an analytical expression form the time-dependence of heat transmission through convectively thinned lithosphere. Anomaly amplitudes primarily depend on the viscosity structure of the lower lithosphere and the asthenosphere, with a minor dependence on plume temperature. Lithospheric thinning is strongest around the time the plate is above the plume conduit, while the maximum heat flux anomaly occurs about 40-140 Myr later. Therefore, continental and cratonic plume tracks can be identified by lithospheric thinning, even if they lack extrusive and intrusive magmatism, followed by elevated surface heat flux several 10s of Myr later. This has important implications, especially for arctic settings such as Greenland or Antarctica, as ice melting rates might be affected by elevated heat flow long after the plume passage.

How to cite: Heyn, B. and Conrad, C.: Basal erosion and surface heat flux anomalies associated with plume-lithosphere interaction beneath continents, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2631, https://doi.org/10.5194/egusphere-egu22-2631, 2022.

15:27–15:34
|
EGU22-540
|
ECS
|
On-site presentation
Açelya Ballı, Oğuz Göğüş, and Jeroen van Hunen

A number of geological, geochemical and seismological studies suggest that cratonic lithospheres may be associated with thinning and destruction. For such unique plate configurations, the most well-known example is the North China craton. Geological studies suggest that during the Mesozoic era (120-80 Ma), a surge of magmatism occurred across the North China Craton as a response to the removal of the portions of the lithosphere beneath it. However, the question of which processes control lithospheric thinning/removal is yet to be understood. The one that is the subject of this study is the deformation controlled by gravitational instabilities (convective removal), that develop because of density variations between the lithosphere and the underlying sub-lithospheric (asthenospheric) mantle.

In accordance with numerical model predictions conceptual geological hypotheses are inferred to invoke the phase transitions in the lower crust and densification of this layer through the transformation of the basalt to eclogite during late Jurassic where Pacific flat-slab subduction led to shortening in the continental back arc (e.g Andean type tectonics). The removal event possibly occurred following the plate shortening during Early Cretaceous and various surface geological features, for instance, normal faulting/extension and pull apart basins and are interpreted in the context of coupled crust-mantle dynamics. This research aims to facilitate new 3D modelling strategies to further explain how large-scale plate geodynamics may account for the geological-geophysical fingerprints of destruction at North China Craton. The problem of deformation of the North China Craton will be approached on a much broader aspect including the extensional events that took place in Cretaceous. The overarching goal of this work is to explain the first order geodynamic mechanism that possibly constrain the craton destructions not only under North China but also other areas where such mechanism has been postulated (e.g North America, South Africa). 

 

 

 

How to cite: Ballı, A., Göğüş, O., and van Hunen, J.: 3D Modeling of Crust-Mantle Dynamics on Cratonic Regions: Implications for the Deformation of North China Craton, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-540, https://doi.org/10.5194/egusphere-egu22-540, 2022.

15:34–15:41
|
EGU22-6661
|
ECS
|
On-site presentation
|
Anna Makushkina, Benoit Tauzin, Meghan S. Miller, Hrvoje Tkalčić, and Hans Thybo

Large-scale topography is thought to be mainly controlled by active tectonic processes. Fennoscandia is located far from any active tectonic setting and yet includes a mountain range along its passive North Atlantic margin. Models proposed to explain the origin of these enigmatic mountains are based on glacial isostatic adjustments, delamination, long-term isostatic equilibration, and dynamic support from the mantle, yet no consensus has been reached.

Here we demonstrate that Precambrian lithospheric structure of Fennoscandia controlled both Cenozoic oceanic breakup and recent mountain rise in the North Atlantic region. Fennoscandia formed by amalgamation of Proterozoic and Archean continental blocks; using both S- and P-receiver functions, we discovered that the Fennoscandian lithosphere still retains the original structural heterogeneity and its western margin is composed of three distinct blocks. The southern and northern blocks have relatively thin crust (~40-45 km), while the central block has thick crust (~60 km) that most likely was formed by crustal stacking during the Proterozoic amalgamation. The boundaries of the blocks continue into the oceanic crust as two major structural zones of the North-East Atlantic, suggesting that the Fennoscandian amalgamation structures determined the geometry of the ocean opening. We found no evidence for mountain root support or delamination in the areas of high topography that could be related to the mountain formation. Instead, our results suggest that the geometry of the observed features creates conditions favorable for edge-driven convection at the adjacent narrow margins that provides dynamic support for the mountains in Scandinavia.

How to cite: Makushkina, A., Tauzin, B., Miller, M. S., Tkalčić, H., and Thybo, H.: Ocean break-up and related mountain rise controlled by a continentalcrustal root, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6661, https://doi.org/10.5194/egusphere-egu22-6661, 2022.

15:41–15:48
|
EGU22-2524
|
On-site presentation
Grazina Skridlaite, Laurynas Siliauskas, Martin Whitehouse, Åke Johansson, and Andrius Rimsa

The concealed basement of the Mid-Lithuanian domain (MLD) is considered to be part of a larger Precambrian unit within the western East European Craton (EEC), the Mid-Baltic belt (MBB), established by Bogdanova et al. (2015). New data on rock chemistry, U-Pb ages, and the Sm-Nd and Rb-Sr isotopic systems allow to subdivide the MLD into distinct parts, discuss their origin and correlate them with similar units on the Swedish side.

The MLD can be subdivided into two parts: NW and SE. The NW MLD magmatic rocks crystallized from 1.86 to 1.83 Ga and were subsequently intruded by 1.81-1.80 Ga granitoids and charnockitoids. The NW MLD samples have SiO2 contents between 48 and 71 wt.% but have similar initial εNd values at -1 to -2, while their initial Sr isotope ratios scatter. Nd isotope data suggest either an enriched mantle source, or a mantle magma that was mixed with older crustal material.

The SE MLD magmatic rocks originated from a slightly depleted mantle source from 1.87 to 1.82 Ga. At 1792±9 Ma, they were intruded by gabbronorites which in turn were crosscut by thin veinlets of microgabbronorite at 1758±11 Ma. The SE MLD rocks have positive εNd (+1 to +3) and undisturbed Rb/Sr systems suggesting mantle-derivation, with the variation in composition (mafic to felsic) due to fractionation rather than crustal contributions.

The SE MLD magmatic series with oceanic island arc affinity correlate well with the ca 1.85 Ga Fröderyd metavolcanics of the Vetlanda-Oskarshamn belt (Salin et al., 2021) in SE Sweden, while the NW MLD rocks are similar to the TIB-0 (1.86-1.85 Ga) Askersund granitoids (cf. Salin et al., 2021) in the southern Bergslagen area. The younger (1.81-1.79 Ga) intrusives in both areas are time-equivalents of the TIB-1 magmatism on the Swedish side. Thus, the MLD as well as its counterparts on the Swedish side of the Baltic Sea, the TIB-0 magmatism in the southern Bergslagen area and the Vetlanda-Oskarshamn belt, may be assigned to the same Mid-Baltic Belt, representing an active, south-facing continental margin established at ca. 1.86 Ga. The shape and outline of the Belt was affected by the Fennoscandia-Sarmatia collision at ca. 1.82-1.80 Ga, the 1.81-1.76 Ga TIB-1 magmatism, as well as by later Mesoproterozoic intraplate magmatism.

Bogdanova, S. et al., 2015. Precambrian Research 259, 5–33.

Salin, E. et al., 2019. Precambrian Research 328, 287–308.

Salin, E. et al., 2021. Precambrian Research 356, 106134

How to cite: Skridlaite, G., Siliauskas, L., Whitehouse, M., Johansson, Å., and Rimsa, A.: Evidence for a ca 1.86 Ga continental margin in the Baltic Sea region: rock chemistry, U-Pb ages, and Nd and Sr isotopic data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2524, https://doi.org/10.5194/egusphere-egu22-2524, 2022.

15:48–15:55
|
EGU22-6975
|
On-site presentation
Matti Kurhila, Teemu Anttilainen, Tuomo Karinen, and Perttu Mikkola

A 3000 m deep hole is being drilled in the Archean Karelian Craton in northeastern Finland in an area where the granitoids dominating the surface have yielded Neoarchean ages (2.8–2.7 Ga). Archean greenstones and Paleoproterozoic dolerites are exposed within the domain as well. The drilling site lies between ca. 2.44 Ga Koillismaa and Näränkävaara mafic layered intrusions. This site was chosen based on gravimetric, magnetic, magnetotelluric and reflection seismic studies, which have revealed a deep anomaly that seems to connect the two mafic layered intrusions. Based on modelling of the geophysical data, the upper boundary of this ca. 60 km long, roughly E-W oriented anomaly lies at approximately 1.5 km depth.

We sampled various rock types from depths of ~40–1600 m for zircon U-Pb dating. The lithologies include leucogranites, tonalite gneiss, hornblende diabase, quartz diorite and granodiorite. Based on observations from the drill core extracted so far, the source of the anomaly is likely to be ultramafic cumulates. Also, presence of Paleoproterozoic granitoids is likely. We will perform the U-Pb analyses during the winter of 2022. The results are expected to confirm the interconnection of the two layered intrusions, clarify the age distribution of the granitoids in the region, and help to decipher the detailed tectonic evolution of the Archean Koillismaa area. 

How to cite: Kurhila, M., Anttilainen, T., Karinen, T., and Mikkola, P.: Geochronology of the unexposed crust within the Finnish Archean – insights from the Koillismaa Deep Hole in Kuusamo, northeastern Finland, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6975, https://doi.org/10.5194/egusphere-egu22-6975, 2022.