HS10.2

EDI
From the source to the sea – rivers, estuaries, deltas, marshlands, and coastal seas under global change
Co-organized by BG4/OS2
Convener: Jana Friedrich | Co-conveners: Debora Bellafiore, Andrea D'Alpaos, Michael Rode, Christian Schwarz

This session provides a platform for interdisciplinary science addressing the continuum from the river source to the sea. A systems approach is indispensable for science-based solutions to sustainably manage complex River-Sea social-ecological systems. Studies linking environmental and social sciences and crossing geographical borders are particularly invited: from the river source and its catchment through estuaries, deltas and marshlands across the freshwater-marine water transition into the coastal sea, including surface-groundwater interaction. Studies addressing the impacts of climate change and extreme events and the impact of human activities on water and sediment quality and quantity, hydromorphology, biodiversity, ecosystem functioning and services of River-Sea continua are of particular interest.

We need to understand how River-Sea Systems function and to address many open questions. How are River-Sea continua changing due to human pressures? What is the impact of processes in the catchment on coastal and marine systems function, and vice versa? How can we discern between human-induced changes or those driven by natural processes from climate-induced variability and extreme events? What will the tipping points of social-ecological system states be and what will they look like? How can we better characterise river-sea systems from the latest generation Earth observation to citizen science based observatories. How can we predict short and long-term changes in River-Sea-Systems to manage them sustainably? What is the limit to which it is possible to predict the natural and human-influenced evolution of River-Sea-Systems? The increasing demand to balance intensive human use and environmental protection in River-Sea Systems requires holistic and integrative research approaches with the ultimate goal of enhanced system understanding as the knowledge base for sustainable management solutions.