HS4.7

EDI
Advances in the hydrologic and hydraulic modelling and design for extreme floods
Convener: Sanjaykumar Yadav | Co-conveners: Ramesh Teegavarapu, Biswa Bhattacharya, Rashmi YadavECSECS, Ayushi PanchalECSECS

The occurrences of extreme flood events have increased globally in the last two decades as noted by recent rare and catastrophic flooding events in Germany, Belgium, China, the USA and in the monsoon season of India. Advanced innovative methods and conceptual improvements in existing approaches are required to address the modelling and management of the spatial and temporal complexity of extreme floods. The observed increase in frequency and severity of events can be predicted by joint probabilistic analyses of precipitation and river flow extremes. Evidence from the rare extreme events indicates that assumptions of Holocene climate stationarity is not applicable anymore for hydrologic analysis and design. The observed significant changes in weather patterns and characteristics that lead to extreme precipitation in different parts of the world far exceeded the design capacities of local protection infrastructures and systems – resulting in massive flooding, casualties, and economic losses. The watershed response to the extreme precipitation is the worst when combined with saturated steep catchments combined with antecedent moisture conditions. Prediction of region-scale and localized extreme events well ahead of time is a real challenge. New design protocols have required that account for uncertainties in future meteorological events and provide flexibility in the design and operation of infrastructure to minimize the consequences of extreme events. Understanding the mechanisms of extreme precipitation and its hydro meteorological connection with flooding, especially under the circumstances of global climate change, is critical for flood prevention and mitigation. This session invites research papers that focus on scientific and technological developments in extreme precipitation estimation, flood monitoring, and flood modelling, with the end goal of improving flood prevention and mitigation. The research studies discussing advancements in situ measurement and remote sensing of extreme precipitation, rainfall-runoff modelling, statistical and hydrological analysis of extreme precipitation and flood, flood forecasting and warning, and impact assessment of climate change and land use/cover change on flood are also invited. Research works that emphasize and discuss case studies on modelling extreme events are also expected to gain and learn from insights gained from flood disaster modelling and management.