Vilhelm Bjerknes Medal Lecture by Hugh Coe & AS Division Outstanding ECS Award Lecture by Karin van der Wiel


Vilhelm Bjerknes Medal Lecture by Hugh Coe & AS Division Outstanding ECS Award Lecture by Karin van der Wiel
Convener: Athanasios Nenes
| Mon, 23 May, 19:00–20:00 (CEST)
Room F1

Session assets

Presentations: Mon, 23 May | Room F1

Chairperson: Athanasios Nenes
AS Division Outstanding ECS Award Lecture
On-site presentation
Karin van der Wiel

The past decades have seen significant increases in the societal and natural damages from extreme weather events. Preventing or limiting evitable future damages requires climate change mitigation and adaptation measures. Societal adaptation to changing weather and climate extremes requires detailed knowledge on how these meteorological extremes are changing (understanding future hazard) and knowledge of the pathways in which weather impacts society (understanding vulnerability and exposure).

A full focus on meteorology is therefore misguided, as the impact of two similar meteorological events at different times or different locations will vary widely. This shows the need for explicit consideration of the entire chain of events, and how this chain results in potentially heavy societal impacts. Developments in large ensemble climate modelling, data science and storyline techniques help to identify the meteorological drivers of extreme impacts.

We will illustrate these developments through practical examples for varied ‘impacts’, e.g. hydrological extremes, renewable energy extremes, and agricultural extremes. We will provide insights into the promise and pitfalls of modern big data approaches, and discuss ways forward, including co-production efforts to increase the societal uptake and hence usefulness of our science.

How to cite: van der Wiel, K.: Linking societal impacts to changing weather, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11953,, 2022.

Vilhelm Bjerknes Medal Lecture
Presentation form not yet defined
Hugh Coe


Atmospheric particulate plays an important role in air pollution and in the climate system.  There is a strong relationship between concentrations of fine particulate matter and increased morbidity and mortality and no threshold has been determined below which no detrimental health impacts have been detected.  This has led to World Health Organisation limit guidelines being revised to 5 μg/m3 for PM2.5, representing a major challenge since reduction on the scales required are very large indeed.  Aerosol particles scatter and absorb sunlight and influence cloud properties, and hence have an impact on climate through modification of regional radiation balance.  Understanding the chemical and physical properties of particulate is essential if we are to be able to discriminate different sources, determine the processes driving the additional of particulate mass as a result of atmospheric processing, and constrain the optical properties and influence atmospheric pathways that control regional radiative properties and distribution.

Over the last 20 years there has been a transformation in the capability of instrumentation capable of determining the composition of atmospheric particulate matter.  Offline analytical capability has enabled us to achieve a much more comprehensive molecular level description of aerosol composition.  Over the same period there has been a transformation in the capability of online instrumentation for measurements of aerosol composition.  Online mass spectrometric approaches now enable chemical characterisation of particulate at the molecular level in near-real time.  Optical methods are also providing insight into fine particles, for example determining black carbon properties.  Such measurements are providing an unprecedented insight into aerosol processes in the atmosphere on a wide range of scales and offer new observational constraints on many key atmospheric processes.

This presentation will examine the development of online aerosol measurement capability and its use in air quality and regional climate research, focussing on field observations, including observations from airborne platforms. The talk will consider the source contribution of vehicle, solid-fuel and cooking to primary aerosol in urban environments, and the contribution of secondary particulate matter and its sources, considering the role of both biogenic and anthropogenic precursors. Biomass-burning is a globally important source of both organic matter and black carbon and these sources are projected to increase as climate warms.  Observations have greatly advanced our knowledge of the relationship between biomass burning aerosol composition, optical properties and effect on radiation.  Airborne observations focusing on subtropical smoke across South America and Africa and links to radiative properties and effects on climate will be discussed.  The discussion will also cover secondary inorganic aerosol contributions from sulphur and nitrogen oxidation to aerosol and cloud properties. These observations have been used to provide constraint on global model estimates of aerosol budgets and lifecycles.  The presentation will outline future challenges for observational aerosol science in the atmosphere and the role of large observation platforms given the need to reduce carbon footprint.

How to cite: Coe, H.: Aerosol composition, climate and air quality, why molecular scale observations are important and what are the future challenges, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4229,, 2022.