EGU23-10057, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu23-10057
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Building a smart green system to control water leakage and monitor drinking water quality in the water supply system of Paramythia city, Greece: the case of SMASH project

Angelos Chasiotis1, Stavroula Tsitsifli2, Konstantinos Panytsidis2, Vegard Nilsen3, Nikolaos Mantas2, Dimitrios Theodorou2, Thomas Kyriakidis2, Stefanos Chasiotis1, Maria Bousdeki1, Elissavet Feloni1, Harsha Ratnaweera3, Panagiotis Nastos1, and Malamati Louta2
Angelos Chasiotis et al.
  • 1Faculty of Geology and Geoenvironment - Laboratory of Climatology and Atmospheric Environment, National & Kapodistrian University of Athens, Athens, Greece (angeloschasiotis@gmail.com)
  • 2Department of Electrical and Computer Engineering - Telecommunication Networks and Advanced Services (TELNAS) Laboratory, University of Western Macedonia, Kozani, Greece
  • 3Department of Building and Environmental Technology - Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway

Water leakage is acknowledged as one of the most important issues that drinking water supply systems are facing worldwide. Non-Revenue Water is estimated to 346 million m3 per day and its cost/value is estimated to 39 billion USD per year. At the same time drinking water quality is jeopardized from the water intake points to the consumer’s tap, even during normal operating conditions.

ICT support water utility operators to improve the operational capacity of their water supply system. A smart green system to control water leakage and monitor drinking water quality in the water supply system of Paramythia city will be built in the context of SMASH project. It consists of: (a) IoT system comprising three local control stations, installed in selected parts of the water supply network, monitoring water quantity&quality parameters in real time; (b) the hydraulic simulation model of the water supply system of Paramythia; (c) a virtual sensors system, which will be used for water quality prediction; (d) a Decision Support System (DSS) for leakage detection and optimal management of water supply system parameters in an automated manner.

The DSS will detect and locate water leakages within the DMA zone and inform the operators for excessive values in drinking water quality parameters. The DSS will use as inputs the data from the IoT system, will interact with the hydraulic simulation model, and obtain the water quality data from the virtual sensors. All these data will be processed by the DSS logic in the backend subsystem. The IoT and the hydraulic simulation data, based on the digital twin of the water supply system, are used for the calculation of specific performance indicators related to water leakage, such as well-known IWA indicators: water losses, ILI, etc. Calculating the divergences between the PI values observed & the ones representing the optimal operation of the water network without leakages and setting appropriate thresholds, the DSS will detect the leakage, while several different scenarios will run in hydraulic simulation. The frontend subsystem of the DSS will be able to visualize the water distribution network, statistical values of water quantitative & qualitative parameters. It will provide alarms in case of leakage or exceedance of water quality parameters’ values and it will show the leakage location in a map. The architecture of the smart green system, currently under development, is depicted in Fig.1.

Figure 1. The DSS for the water parameters management in the water supply system

Keywords: Drinking water; water quality; leakage; virtual sensors; smart system; decision support.

Acknowledgement: This work is co-financed by EEA Grants 2014 – 2021 and Greek Public Investments Program.

  • Liemberger, R., & Wyatt, A. (2019). Quantifying the global non-revenue water problem. Water Supply19(3), 831-837.
  • Antzoulatos G., Mourtzios C., et al (2020), Making urban water smart: the SMART-WATER solution. Water Science & Technology, 82(12), 2691–2710.
  • Alegre, H., Baptista, et al (2016). Performance indicators for water supply services. 3rd IWA publishing.

How to cite: Chasiotis, A., Tsitsifli, S., Panytsidis, K., Nilsen, V., Mantas, N., Theodorou, D., Kyriakidis, T., Chasiotis, S., Bousdeki, M., Feloni, E., Ratnaweera, H., Nastos, P., and Louta, M.: Building a smart green system to control water leakage and monitor drinking water quality in the water supply system of Paramythia city, Greece: the case of SMASH project, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10057, https://doi.org/10.5194/egusphere-egu23-10057, 2023.