Analyzing the September 5, 2022, CME from a Space Weather perspective: Was this a “Carrington-type” event?
- 1George Mason University, Fairfax, VA, USA (epaouris@gmu.edu)
- 2Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
- 3Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing of the National Observatory of Athens (IAASARS-NOA), Penteli, Greece
The Coronal Mass Ejection of September 5, 2022, was the most extreme CME event ever observed and measured in-situ by spacecraft inside the corona (0.06 AU for Parker Solar Probe) and from multi-viewpoints ranging from 0.71 AU (Solar Orbiter) to ~1.0 AU (STEREO-A and SOHO). In this work, we evaluate the space weather significance of this event by examining the source region characteristics and its evolution as a function of time via a magnetic complexity index. We also examine the kinematics and energetics of the associated CME. It was a very fast and massive event, with a speed greater than 2200 km/s, and a mass of 2×1016 grams. These characteristics place this event in the top 1% of all the CMEs observed by SOHO/LASCO since 1996. It is therefore natural to ask “what if this CME was an Earth-directed one?”.
To answer this question, we put the CME and flare properties in the context of similar previous extreme events (the July 23, 2012, and March 7, 2012 eruptions) including the solar energetic particle (SEP) event characteristics. We find that, if this event was magnetically well-connected to Earth, it could have resulted in a ground level enhancement (GLE) event. We estimate the transit time and likely Dst values if this were an Earth-directed event.
How to cite: Paouris, E., Kouloumvakos, A., Vourlidas, A., and Papaioannou, A.: Analyzing the September 5, 2022, CME from a Space Weather perspective: Was this a “Carrington-type” event?, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10131, https://doi.org/10.5194/egusphere-egu23-10131, 2023.