EGU23-10233
https://doi.org/10.5194/egusphere-egu23-10233
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Strong variability in the thermal structure of Tibetan Lithosphere

Bing Xia, Irina Artemieva, Hans Thybo, and Simon Klemperer
Bing Xia et al.
  • China University of Geosciences, School of Earth Science, Geology Section, Wuhan, China (bingxia0127@gmail.com)

We present a model of thermal lithospheric thickness (the depth where the geotherm reaches a temperature of 1300°C) and surface heat flow in Tibet and adjacent regions based on the new thermal-isostasy method. The method accounts for crustal density heterogeneity, is free from any assumption of a steady-state lithosphere thermal regime, and assumes that deviations from crustal Airy-type isostasy are caused by lithosphere thermal heterogeneity. We observe a highly variable lithospheric thermal structure which we interpret as representing longitudinal variations in the northern extent of the subducting Indian plate, southward subduction of the Asian plate beneath central Tibet, and possible preservation of fragmented Tethyan paleo-slabs. Cratonic-type cold and thick lithosphere (200-240 km) with a predicted surface heat flow of 40-50 mW/m2 typifies the Tarim Craton, the northwest Yangtze Craton, and most of the Lhasa Block that is likely refrigerated by underthrusting Indian lithosphere. We identify a ‘North Tibet anomaly’ with thin (<80 km) lithosphere and high surface heat flow (>80-100 mW/m2). We interpret this anomaly as the result of removal of lithospheric mantle and asthenospheric upwelling at the junction of the Indian and Asian slabs with opposite subduction polarities. Other parts of Tibet typically have intermediate lithosphere thickness of 120-160 km and a surface heat flow of 45-60 mW/m2, with patchy anomalies in eastern Tibet. While different uplift mechanisms for Tibet predict different lithospheric thermal regimes, our results in terms of a highly variable thermal structure beneath Tibet suggest that topographic uplift is caused by an interplay of several mechanisms.

How to cite: Xia, B., Artemieva, I., Thybo, H., and Klemperer, S.: Strong variability in the thermal structure of Tibetan Lithosphere, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10233, https://doi.org/10.5194/egusphere-egu23-10233, 2023.