Assessing the added value of Aeolus winds in the ECCC forecast system
- 1Department of Physics, University of Toronto, Toronto, Canada (gina.chou@mail.utoronto.ca)
- 2Environment and Climate Change Canada, Montreal, Canada
The European Space Agency (ESA)’s Aeolus mission, launched in August 2018, provides the first global horizontal line-of-sigh (HLOS) wind profile measurements. Many Numerical Weather Prediction (NWP) centres, including ECMWF, DWD, Météo-France, Met-Office and ECCC, have shown that assimilating Aeolus winds improves overall forecast skill, especially in the tropics and data-sparse regions. To better characterize the locations and drivers of improved skill from Aeolus, we use a series of Observing System Experiments (OSEs) with the ECCC Global Deterministic Prediction System (GDPS) covering the period July to September 2019 and December 2019 to March 2020. Three experiments are used: CNTRL, CNTRL+Aeolus, and CNTRL-winds. All the observations assimilated in the GDPS are included in the CNTRL experiment. The Aeolus winds are added in the CNTRL+Aeolus experiment and the operational wind observations are withheld in the CNTRL-wind experiment. The impact of the operational winds and Aeolus are quantified by comparing the forecast error of the CNTRL-winds and CNTRL experiments with the CNTRL and CNTRL+Aeolus experiments.
As expected, the operational winds improve the tropospheric forecast over the tropics the most, with a normalized forecast error of 8% for the wind field. By adding the Aeolus winds, which account for less than 1% of the observations, the tropospheric forecast further improves by 0.7-0.9% over the tropics and the Arctic, and by 0.5-0.6% over the data-sparse Southern Hemisphere extra-tropics. The added value of Aeolus winds is further highlighted when its impact on forecasts as a function of length scale is investigated, using a spherical harmonic decomposition. The impact is measured as the difference of the 250-hPa kinetic energy forecast error spectra between experiments. The impact of operational winds and Aeolus is dominated by the transient component whose impact is nearly four times greater than the impact on the mean component. The operational winds largely improve the forecast of global scale to intermediate scale in the short-range forecasts. The impact then decreases as forecast range increases. On the other hand, the impact of Aeolus is mostly seen in the intermediate to large scale range with a peak around spherical harmonics of degree 9 (scales about 4000 km), and is the smallest on day 1 and increases until days 4 to 5. This analysis suggests that Aeolus winds provide estimates of the wind state that are valuable and complementary to that provided from current operational winds.
How to cite: Chou, C.-C. (., Kushner, P. J., and Laroche, S.: Assessing the added value of Aeolus winds in the ECCC forecast system, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10418, https://doi.org/10.5194/egusphere-egu23-10418, 2023.