EGU23-10697
https://doi.org/10.5194/egusphere-egu23-10697
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Joint Effort for Data Assimilation Integration (JEDI): A unified data assimilation framework for Earth system prediction supported by NOAA, NASA, U.S. Navy, U.S. Air Force, and UK Met Office

Dom Heinzeller, Maryam Abdi-Oskouei, Stephen Herbener, Eric Lingerfelt, Yannick Trémolet, and Tom Auligné
Dom Heinzeller et al.
  • University Corporation for Atmospheric Research, Joint Center for Satellite Data Assimilation, Boulder, United States of America (dom.heinzeller@ucar.edu)

The Joint Effort for Data assimilation Integration (JEDI), is an innovative data assimilation system for Earth system prediction, spearheaded by the Joint Center for Satellite Data Assimilation (JCSDA) and slated for implementation in major operational modeling systems across the globe in the coming years. Funded as an inter-agency development by NOAA, NASA, the U.S. Navy and Air Force, and with contributions from the UK Met Office, JEDI must operate on a wide range of computing platforms. The recent move towards cloud computing systems puts portability, adaptability and performance across systems, from dedicated High Performance Computing systems to commercial clouds and workstations, in the critical path for the success of JEDI.

JEDI is a highly complex application that relies on a large number of third-party software packages to build and run. These packages can include I/O libraries, workflow engines, Python modules for data manipulation and plotting, several ECMWF libraries for complex arithmetics and grid manipulations, and forecast models such as the Unified Forecast System (UFS), the Goddard Earth Observing System (GEOS), the Modular Ocean Model (MOM6), the Model for Prediction across Scales (MPAS), the Navy Environmental Prediction sysTem Utilizing the NUMA corE (NEPTUNE), and the Met Office Unified Model (UM).

With more than 100 contributors and rapid code development it is critical to perform thorough automated testing, from basic unit tests to comprehensive end-to-end-tests. This presentation summarizes recent efforts to leverage cloud computing environments for research, development, and near real-time applications of JEDI, as well as for developing a Continuous Integration/Continuous Delivery (CI/CD) pipeline. These efforts rest on a newly developed software stack called spack-stack, a joint effort of JCSDA, the NOAA Environmental Modeling Center (EMC) and the U.S. Earth Prediction Innovation Center (EPIC). Automatic testing in JEDI is implemented with modern software development tools such as GitHub, Docker containers, various Amazon Web Services (AWS), and CodeCov for testing and evaluation of code performance. End-to-end testing is realized in JCSDA’s newly developed Skylab Earth system data assimilation application, which combines JEDI with the Research Repository for Data and Diagnostics (R2D2) and the Experiments and Workflow Orchestration Kit (EWOK), and which leverages the AWS Elastic Compute Cloud (EC2) for testing, research, development and production.

How to cite: Heinzeller, D., Abdi-Oskouei, M., Herbener, S., Lingerfelt, E., Trémolet, Y., and Auligné, T.: The Joint Effort for Data Assimilation Integration (JEDI): A unified data assimilation framework for Earth system prediction supported by NOAA, NASA, U.S. Navy, U.S. Air Force, and UK Met Office, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10697, https://doi.org/10.5194/egusphere-egu23-10697, 2023.