EGU23-10726, updated on 19 Jan 2024
https://doi.org/10.5194/egusphere-egu23-10726
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A hybrid VMD-WT-InceptionTime model for multi-horizon short-term air temperature forecasting in Alaska

Jaakko Putkonen1, M. Aymane Ahajjam2, Timothy Pasch3, and Robert Chance4
Jaakko Putkonen et al.
  • 1Harold Hamm School of Geology and Geologic Engineering, University of North Dakota, Grand Forks, United States of America (Jaakko.Putkonen@und.edu)
  • 2School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, United States of America (mohamed.ahajjam@und.edu)
  • 3Department of Communications, University of North Dakota, Grand Forks, United States of America (Timothy.pasch@und.edu)
  • 4Harold Hamm School of Geology and Geologic Engineering, University of North Dakota, Grand Forks, United States of America (Robert.Chance@und.edu)

The lack of ground level observation stations outside of settlements makes monitoring and forecasting local weather and permafrost challenging in the Arctic. Such predictive pieces of information are essential to help prepare for potentially hazardous weather conditions, especially during winter. In this study, we aim at enhancing predictive analytics in Alaska of permafrost and temperature by using a hybrid forecasting technique. In particular, we propose VMD-WT-InceptionTime model for short-term air temperature forecasting.

This proposed technique incorporates data preprocessing techniques and deep learning to enhance the accuracy of the next seven days air temperature forecasts. Initially, the Spearman correlation coefficient is utilized to examine the relationship between different inputs and the forecast target temperature. Following this, Variational Mode Decomposition (VMD) is used to decompose the most output-correlated input variables (i.e., temperature and relative humidity) to extract intrinsic and non-stationary time-frequency features from the original sequences. The Wavelet Transform (WT) is then employed to further extract intrinsic multi-resolution patterns from these decomposed input variables. Finally, a deep InceptionTime model is used for multi-step air temperature forecasting using these processed sequences. This forecasting technique was developed using an open dataset holding 20+ years of data from three locations in Alaska: North Slope, Alaska, Arctic National Wildlife Refuge, Alaska, and Diomede Island region, Bering Strait. Model performance has been rigorously evaluated of metrics including RMSE, MAPE and error.

Results highlight the effectiveness of the proposed hybrid model in providing more accurate short-term forecasts than several baselines (GBDT, SVR, ExtraTrees, RF, ARIMA, LSTM, GRU, and Transformer). More specifically, this technique reported RMSE and MAPE average increase rates amounting to 11.21% and 16.13% in North Slope, 30.01% and 34.97% in Arctic National Wildlife Refuge, and 16.39%, 23.46% in Diomede Island region. In addition, the proposed technique produces forecasts over all seven horizons with a maximum error of <1.5K, a minimum error of >-1.2K, and an average error lower than 0.18K for North Slope. For Arctic National Wildlife Refuge, a maximum error of <1K, a minimum error of >-0.9K, and an average of < 0.1K. While a maximum error of <0.9K, a minimum error of >-0.8K, and an average of <0.13K, for Diomede Island region. However, the worst performances achieved were errors of around 6K in the third horizon (i.e., 3rd day) for North Slope and the Arctic National Wildlife Refuge and the last horizon (i.e., 7th day) for the Diomede Islands region. Most of the worst performances of the proposed technique in all three locations can be attributed to having to produce forecasts of higher variations and wider temperature ranges than their averages.

Overall, this research highlights the potential of the decomposition techniques and deep learning to: 1) reveal and effectively learn the underlying cyclicity of air temperatures at varying resolutions that allows for accurate predictions without any knowledge of the governing physics, 2) produce accurate multi-step temperature forecasts in Arctic climates.

How to cite: Putkonen, J., Ahajjam, M. A., Pasch, T., and Chance, R.: A hybrid VMD-WT-InceptionTime model for multi-horizon short-term air temperature forecasting in Alaska, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10726, https://doi.org/10.5194/egusphere-egu23-10726, 2023.

Supplementary materials

Supplementary material file