EGU23-10765
https://doi.org/10.5194/egusphere-egu23-10765
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A three-channel thermal dissociation cavity ring-down spectrometer for the continuous measurement of ambient NO2, total peroxy nitrates and total alkyl nitrates 

Chuan Lin, Renzhi Hu, Pinhua Xie, Guoxian Zhang, Jinzhao Tong, and Wenqing Liu
Chuan Lin et al.

A newly constructed thermal dissociation cavity ring-down spectrometer (TD-CRDS) for simultaneous measuring NO2, total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs) was presented. NO2 is detected directly at around 405.46 nm, ΣPNs and ΣANs are detected as NO2 after thermal decomposition at 180℃ and 360℃. The influences of the recombination reaction of RO2 radicals in two different types of heated inlets were discussed and compared, and the thermal decomposition efficiency of PNs was found to be higher with the value of 96% at the heated inlet filled with glass beads than the other (72%). Possible interferences, mainly O3 (including reactions of O3 via NO and O3 via NO2) and NOx (such as the recombination reactions of NOx and peroxy radicals at different thermal temperatures), were quantitatively characterised. The effects were found to be much weaker in the heated inlet filled with glass beads. Thus, a calibration method for measuring ΣPNs and ΣANs was established, especially to solve the accurate measurement of ΣPNs and ΣANs under high amounts of ambient NOx and O3 in China. At the time resolution of 20 s, the detection limits of the TD-CRDS instrument for NO2, ΣPNs and ΣANs are 6 pptv (1σ), 15 pptv (1σ) and 15 pptv (1σ), respectively. Finally, we applied the instrument to the Hefei field campaign, obtaining the concentration distribution and variation characteristics of ΣPNs and ΣANs.

 

 

How to cite: Lin, C., Hu, R., Xie, P., Zhang, G., Tong, J., and Liu, W.: A three-channel thermal dissociation cavity ring-down spectrometer for the continuous measurement of ambient NO2, total peroxy nitrates and total alkyl nitrates , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10765, https://doi.org/10.5194/egusphere-egu23-10765, 2023.