Characteristics of Mesoscale Convective Systems in the Philippines
- Department of Geophysics, Tohoku University, Sendai, Japan (clagare@dc.tohoku.ac.jp)
Mesoscale convective systems (MCSs) are organized clusters of convection that often bring in heavy to extreme rainfall, which can cause devastating effects such as flooding, landslides, and significant crop and infrastructural damages. Studies on severe weather in the Philippines, a part of the Maritime Continent where frequent and intense convective activities occur, focus predominantly on synoptic-scale systems (e.g., tropical cyclones). The characteristics of MCSs in the Philippines remain understudied.
Motivated by this research gap, a long-term MCS climatology over the Philippines was constructed using the global MCS tracking database of Feng et al. (2021), and its large-scale environments are investigated to understand the formation of MCSs. Preliminary results show that large-scale flows largely affect MCS formation. MCSs occur more frequently during the peak of the Asian summer monsoon (JJA), producing large rainfall amounts over the west of the Philippines. Meanwhile, the Asian winter monsoon during DJF has a different effect on MCS formation in the Philippines as it does not directly correspond to high occurrences of MCSs. However, the convective systems during DJF still produce high rainfall amounts over the east of the Philippines. Based on these results, additional analyses for the MCSs during the boreal winter are conducted.
Reference:
Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze Jr, R. A., Li, J., ... & Guo, J. (2021). A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD034202.
How to cite: Lagare, Ma. C., Yamazaki, T., and Ito, J.: Characteristics of Mesoscale Convective Systems in the Philippines, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10920, https://doi.org/10.5194/egusphere-egu23-10920, 2023.