EGU23-1093, updated on 14 Nov 2024
https://doi.org/10.5194/egusphere-egu23-1093
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lithium isotopes potential in (paleo)ecology

Fanny Thibon1, Jean Goedert3, Nicolas Séon3, Lucas Weppe4, Jeremy E. Martin1, Romain Amiot1, Sylvain Adnet7, Olivier Lambert6, Paco Bustamante5, Philippe Telouk2, Christophe Lécuyer1, and Nathalie Vigier4
Fanny Thibon et al.
  • 1Laboratoire de Géologie de Lyon (LGL-TPE), Université Claude Bernard Lyon 1, Lyon, France (thibon.fanny@orange.fr)
  • 2Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, Lyon, France
  • 3Centre de Recherche en Paléontologie – Paris (CR2P), Muséum National d’Histoire Naturelle, Paris, France
  • 4Laboratoire d'Océanographie de Villefranche-sur-mer (LOV), Sorbonne Université, Villefranche-sur-Mer, France
  • 5Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, La Rochelle, France
  • 6Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgique
  • 7Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, Montpellier, France

Life evolution has been shaped by marine and continental environmental dichotomy. Particularly, the ecological history of vertebrates is divided into several aquatic and terrestrial phases. Even today, some species spend time in both marine and continental environments during their lifetime. Nevertheless, the timing and location of past ecological transitions, as well as the monitoring of current migration, are still challenging to trace.

To reconstruct the aquatic environments of vertebrates (i.e. seawater vs freshwater), stable (δ13C, δ18O, δ34S) and radiogenic (87Sr/86Sr) isotope systems applied to mineralized tissues have been commonly used in the past decades1–6. Nevertheless, these methods hold some limitations as they cannot be applied universally.

Here, we measured the lithium stable isotope composition of mineralized tissues (δ7Li) from extant vertebrates living in various aquatic environments (seawater, freshwater/terrestrial, and "transitional environments”). We highlight the potential of δ7Li to decipher vertebrates that live in these different environments, in contrast to δ34S and δ18O that cannot distinguish – in some cases – species living in intermediate waters from those living in seawater. Furthermore, we measured the δ7Li values of fossil apatites from extinct vertebrates and obtained values that fall within the range of aquatic environment of their extant relatives7. This new proxy may therefore profit studies in ecology, archaeology and palaeontology.

 

1 M. T. Clementz, A. Goswami, P. D. Gingerich and P. L. Koch, Journal of Vertebrate Paleontology, 2006, 26, 355–370.

2  J. Fischer, S. Voigt, M. Franz, J. W. Schneider, M. M. Joachimski, M. Tichomirowa, J. Götze and H. Furrer, Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353–355, 60–72.

3 J. Goedert, C. Lécuyer, R. Amiot, F. Arnaud-Godet, X. Wang, L. Cui, G. Cuny, G. Douay, F. Fourel, G. Panczer, L. Simon, J.-S. Steyer and M. Zhu, Nature, 2018, 558, 68–72.

4 J. Goedert, R. Amiot, D. Berthet, F. Fourel, L. Simon and C. Lécuyer, Sci Nat, 2020, 107, 10.

5 L. Kocsis, A. Ősi, T. Vennemann, C. N. Trueman and M. R. Palmer, Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280, 532–542.

6 B. Schmitz, S. L. Ingram, D. T. Dockery and G. Åberg, Chemical Geology, 1997, 140, 275–287.

7 F. Thibon, J. Goedert, N. Séon, L. Weppe, J. E. Martin, R. Amiot, S. Adnet, O. Lambert, P. Bustamante, C. Lécuyer and N. Vigier, Earth and Planetary Science Letters, 2022, 599, 117840.

How to cite: Thibon, F., Goedert, J., Séon, N., Weppe, L., Martin, J. E., Amiot, R., Adnet, S., Lambert, O., Bustamante, P., Telouk, P., Lécuyer, C., and Vigier, N.: Lithium isotopes potential in (paleo)ecology, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1093, https://doi.org/10.5194/egusphere-egu23-1093, 2023.