EGU23-10975
https://doi.org/10.5194/egusphere-egu23-10975
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of the performance of regional transport models in simulating CO2 variability over India employing WRF-STILT modelling framework

Vishnu Thilakan, Dhanyalekshmi Pillai, and Jithin S Kumar
Vishnu Thilakan et al.
  • Indian Institute of Science Education and Research Bhopal, Earth and Environmental Sciences, India (vishnutm@iiserb.ac.in)

India needs a high-resolution estimation of carbon sources and sinks to implement the country’s climate change action plans and mitigation strategy effectively. Current carbon estimates over the Indian region based on the “Bottom-up” approach suffer from significant uncertainty, which calls for more process-based models and atmospheric inverse modelling to obtain a more accurate budget. Inverse models constrain the carbon fluxes based on atmospheric observation of CO2 mole fractions. The unavailability of amble observations over the Indian domain critically impacts estimation accuracy. Fortunately, there are increasing efforts to improve the availability of CO2 observation over the domain. Along with the observations, the availability of a suitable transport model to simulate the CO2 distribution is essential to the accurate inverse estimation of carbon fluxes. The inability of coarse-resolution global models to simulate the fine-scale variability in CO2 distribution warrants developing a regional high-resolution modelling system. Here we evaluate the performance of a regional high-resolution modelling system which utilises meteorological fields from the Weather Research and Forecasting (WRF) model to simulate the CO2 transport over the Indian domain using a lagrangian particle dispersion model, Stochastic Time-Inverted Lagrangian Transport Model (STILT). Using lagrangian models enables us to study the CO2 distribution at very high resolution (even at sub-grid scale) with reduced cost. We use the vegetation photosynthesis and Respiration Model (VPRM), coupled with the modelling system, to simulate the biospheric fluxes. The anthropogenic and biomass burning fluxes are obtained from different available inventories. We use CO2 in-situ observations from different parts of the Indian domain, which utilises flask measurements and PICARRO CRDS instruments, to evaluate the modelling system. Our high-resolution modelling framework shows good skill in simulating the CO2 variability over the region. The results of the evaluation will be discussed in detail during the presentation.

How to cite: Thilakan, V., Pillai, D., and S Kumar, J.: Evaluation of the performance of regional transport models in simulating CO2 variability over India employing WRF-STILT modelling framework, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-10975, https://doi.org/10.5194/egusphere-egu23-10975, 2023.