Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, United States of America (andrew.wilcoski@colorado.edu)
Over the last few decades, observations have revealed the presence of water ice at the lunar poles and upended the notion of a completely dry lunar surface. These ice deposits hold information about the history of water on the Moon and in the Earth-Moon system, and are potential resources for future human exploration of the Moon. However, they remain relatively uncharacterized in abundance, distribution, and composition. Foremost among the open questions about lunar ice are: What were the sources of ice on the Moon’s surface, and how much water could have been delivered? The three most likely sources of lunar water ice are: (1) impact delivery from asteroids and/or comets, (2) solar wind ion implantation, and (3) volcanic outgassing of volatiles from the lunar interior. Here, we assess the viability of a volcanic source for water ice accumulated at the lunar poles.
[1] first suggested the occurrence of a volcanically induced transient atmosphere on the ancient Moon that would have been dominated by CO, but with a significant amount of H2O. Further studies investigated the dynamics [2] and atmospheric escape processes [3] that would have affected such an atmosphere. [4] later suggested that a large number (30,000-100,000) of eruptions would have created less massive atmospheres during the Moon’s most volcanically active period (4-2 Ga).
We model the generation of transient atmospheres from 50,000 eruptions from 4 to 2 Ga, the subsequent escape of these atmospheres to space, and the concurrent accumulation of atmospheric water vapor as ice at the lunar poles [5]. The molecular composition of the modeled atmospheres is determined using estimates of outgassed volatile content for lunar volcanic eruptions derived from analyses of Apollo samples [4,6]. We model three atmospheric escape processes: (1) Jeans escape, (2) sputtering escape, and (3) photodissociative escape [3], and model photodissociative escape separately for both CO and H2O. We use maximum annual surface temperatures [7] measured by the Diviner Lunar Radiometer Experiment on board the Lunar Reconnaissance Orbiter [8] to calculate ice accumulation rates for each Diviner pixel within 30° latitude of the poles [5].
We find that water vapor is removed from a typical transient atmosphere in about 50 years via ice accumulation and photodissociative escape. About 41% of the total water vapor mass outgassed from 4 to 2 Ga is accumulated as ice on the surface. This demonstrates that a significant amount of ice (~8×1015 kg) could have been sourced from volcanic outgassing, though atmospheric escape processes also strongly control the efficacy of this mechanism.
[1] Needham, D. H. and Kring, D. A. (2017) EPSL, 478, 175-178. [2] Aleinov, I., et al. (2019) GRL 46, 5107-5116. [3] Tucker, O. J., et al. (2021) Icarus, 359, 114304. [4] Head, J. W., et al. (2020) GRL, 47, e2020GL089509. [5] Wilcoski, A. X., et al. (2022) PSJ 3.5, 99. [6] Rutherford, M. J., et al. (2017) Amer. Mineralogist, 102, 2045-2053. [7] Landis, Margaret E., et al. (2022) PSJ 3.2, 39. [8] Paige, D. A., et al. (2010) Space Sci. Rev., 150, 125- 160.
How to cite: Wilcoski, A., Hayne, P., and Landis, M.: Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11166, https://doi.org/10.5194/egusphere-egu23-11166, 2023.