EGU23-1137
https://doi.org/10.5194/egusphere-egu23-1137
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydraulic behaviour of a mountain permafrost subsoil revealed by an infiltration experiment and ERT time-lapse measurements

Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
Mirko Pavoni et al.
  • Padua, Geosciences, Italy (mirko.pavoni@phd.unipd.it)

Although rock glaciers represent a common periglacial landform in the alpine environment, and have a significant contribution to the hydrological regime of the related areas, their hydrodynamic is relatively less defined if compared to moraines, talus, and hillslope deposits. So far, the hydraulic behaviour of frozen layers that may be found inside rock glaciers has been investigated only with geochemical analysis of their spring water. These previous studies observed that the frozen layer acts as an aquiclude (or aquitard) and separates a supra-permafrost flow component, originating from snow-ice melting and rainwater, and a deeper aquifer at the bottom of the rock glacier systems.

In this work we verified, for the first time with a geophysical monitoring method, the low-permeability hydraulic behaviour associated to the frozen layer of mountain permafrost subsoils. In the inactive rock glacier of Sadole Valley (Southern Alps, Trento Province, Italy) we performed an infiltration experiment combined with 2D electrical resistivity tomography (ERT) measurements in time-lapse configuration. Considering the same ERT transect, a time zero dataset (t0) has been collected before the water injection, subsequently about 800 liters of salt water have been spilled (approximately in a point) on the surface of the rock glacier in the middle of the electrodes array, and 10 ERT datasets have been collected periodically in the following 24 hours. To highlight the variations of electrical resistivity in the frozen subsoil, related to the injected salt water flow, only the inverted resistivity model derived from t0 dataset has been represented in terms of absolute resistivities, while the other time steps results have been evaluated in terms of percentage changes of resistivity with respect to the t0 initial model.

Our results clearly agree with the assumption that a frozen layer acts as an aquiclude (or aquitard) in a mountain permafrost aquifer, since during the infiltration experiment the injected salt water was not able to infiltrate into the underlying permafrost layer. The positive outcome of this test, fronting impervious environment and logistic constraints, opens up interesting future scenarios regarding the application of this geophysical monitoring method for the hydraulic characterization of rock glaciers. The experiment, used in this work to evaluate the permeability of the frozen layer, could be adapted in future to evaluate (in a quantitative way) the hydraulic conductivity of the active layer in rock glacier aquifers.

How to cite: Pavoni, M., Boaga, J., Carrera, A., Zuecco, G., Carturan, L., and Zumiani, M.: Hydraulic behaviour of a mountain permafrost subsoil revealed by an infiltration experiment and ERT time-lapse measurements, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1137, https://doi.org/10.5194/egusphere-egu23-1137, 2023.