EGU23-11411, updated on 10 Mar 2024
https://doi.org/10.5194/egusphere-egu23-11411
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Automated ablation stakes to constrain temperature-index melt models

Andrew D. Wickert1,2,3, Katherine R. Barnhart4,5, William H. Armstrong6, Matías Romero7,8, Bobby Schulz1,9,10, Gene-Hua Crystal Ng1,2, Chad T. Sandell1,3, Jeff D. La Frenierre11, Shanti B. Penprase1,2, Maximillian Van Wyk de Vries1,2,12, and Kelly R. MacGregor13
Andrew D. Wickert et al.
  • 1Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
  • 2Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
  • 3Northern Widget LLC, Saint Paul, MN 55105, USA
  • 4University of Colorado at Boulder, Department of Geological Sciences and Institute for Arctic and Alpine Research, Boulder, CO 80309, USA
  • 5Current address: U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO 80401, USA
  • 6Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28608, USA
  • 7Centro de Investigaciones en Ciencias de la Tierra (CICTERRA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, CP: X5016GCA – Córdoba (Capital), Provincia de Córdoba, Argentina
  • 8Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
  • 9Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
  • 10GEMS Agroinformatics Initiative, University of Minnesota, St. Paul, MN 55108, USA
  • 11Department of Environment, Geography, and Earth Sciences, Gustavus Adolphus College, St. Peter, MN 56082, USA
  • 12School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
  • 13Department of Geology, Macalester College, St. Paul, MN 55105, USA

We developed automated ablation stakes to measure colocated in-situ changes in ice-surface elevation and climatological drivers of ablation. The designs implement open-source hardware, including the Margay data logger, which records information from a MaxBotix ultrasonic rangefinder as well as a sensor to detect atmospheric temperature and relative humidity. The stakes and sensor mounts are assembled using commonly available building materials, including electrical conduit and plastic pipe. The frequent (typically 1–15 minute) measurement intervals permit an integral approach to estimating temperature-index melt factors for ablation. Regressions of ablation vs. climatological drivers improve when relative humidity is included alongside temperature. We present all materials required to construct an automated ablation stake, alongside examples of their deployment and use in Alaska (USA), Ecuador, Patagonia (Argentina), and the Antarctic archipelago.

 

a: Alaska, 2012
b: Alaska, 2013
c: Ecuador, 2016
d: Argentina, 2020
e: Antarctica, 2021

How to cite: Wickert, A. D., Barnhart, K. R., Armstrong, W. H., Romero, M., Schulz, B., Ng, G.-H. C., Sandell, C. T., La Frenierre, J. D., Penprase, S. B., Van Wyk de Vries, M., and MacGregor, K. R.: Automated ablation stakes to constrain temperature-index melt models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11411, https://doi.org/10.5194/egusphere-egu23-11411, 2023.