Neutral Current Sheet Displacement in Reaction to the Radial Interplanetary Magnetic Field at Mercury: Statistical Results from MESSENGER Data.
- 1TU Braunschweig, Institut für Geophysik und extraterrestrische Physik, Faculty of Electrical Engineering, Information Technology, Physics, Braunschweig, Germany (d.heyner@tu-bs.de)
- 2ESA-ESTEC, Noordwijk, Netherlands
- 3IWF, Graz, Austria
- 4University of Michigan, Ann Arbour, USA
Mercury possesses a weak planetary dipole moment and is subject to a strong solar wind inflow. Thus, a small magnetosphere is formed. On the nightside, a neutral current sheet elongates the magnetic field lines to form a magnetotail. From hybrid simulations it is known that this current sheet reacts to changes in the interplanetary magnetic field (IMF). In order to understand the magnetospheric reaction to changes in the solar wind, it is essential to further assess the neutral current sheet movements. The strongly radial IMF at Mercury facilitates magnetopause reconnection in high latitudes which decreases the magnetic pressure in one of the magnetospheric lobes depending on the radial IMF polarity. This produces a northward (or southward) shift of the neutral sheet. Here, we present statistical results from in-situ MESSENGER magnetic field data analysis on the IMF direction as well as the neutral sheet displacement. MESSENGER was a single probe in orbit around Mercury and, as such, it was blind to the solar wind state after having entered the bow shock. Thus, we need to estimate the current IMF radial polarity for the time frame with the probe located inside the magnetosphere. For this, we evaluate different interpolation methods with an adapted bootstrap analysis method on data taken within the upstream solar wind at Mercury. Eventually, the outcome of the statistical analysis on the neutral sheet displacement is compared to the results from hybrid simulations done in the past.
How to cite: Heyner, D., Pump, K., Hercik, D., Exner, W., Narita, Y., Plaschke, F., Schmid, D., Slavin, J., and Volwerk, M.: Neutral Current Sheet Displacement in Reaction to the Radial Interplanetary Magnetic Field at Mercury: Statistical Results from MESSENGER Data., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11546, https://doi.org/10.5194/egusphere-egu23-11546, 2023.