EGU23-11636, updated on 21 Apr 2023
https://doi.org/10.5194/egusphere-egu23-11636
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

State-of-the-Art Review of Machine Learning Models in Civil Engineering: Based on DAMIE Classification Tree

Jaehyun Kim1 and Donghwi Jung2
Jaehyun Kim and Donghwi Jung
  • 1Department of Civil Environmental and Architectural Engineering, Seoul, South Korea (kenkim98@naver.com)
  • 2School of Civil Environmental and Architectural Engineering, Seoul, South Korea (sunnyjung625@korea.ac.kr)

For recent years, Machine Learning (ML) models have been proven to be useful in solving problems of a wide variety of fields such as medical, economic, manufacturing, transportation, energy, education, etc. With increased interest in ML models and advances in sensor technologies, ML models are being widely applied even in civil engineering domain. ML model enables analysis of large amounts of data, automation, improved decision making and provides more accurate prediction. While several state-of-the-art reviews have been conducted in each sub-domain (e.g., geotechnical engineering, structural engineering) of civil engineering or its specific application problems (e.g., structural damage detection, water quality evaluation), little effort has been devoted to comprehensive review on ML models applied in civil engineering and compare them across sub-domains. A systematic, but domain-specific literature review framework should be employed to effectively classify and compare the models. To that end, this study proposes a novel review approach based on the hierarchical classification tree “D-A-M-I-E (Domain-Application problem-ML models-Input data-Example case)”. “D-A-M-I-E” classification tree classifies the ML studies in civil engineering based on the (1) domain of the civil engineering, (2) application problem, (3) applied ML models and (4) data used in the problem. Moreover, data used for the ML models in each application examples are examined based on the specific characteristic of the domain and the application problem. For comprehensive review, five different domains (structural engineering, geotechnical engineering, water engineering, transportation engineering and energy engineering) are considered and the ML application problem is divided into five different problems (prediction, classification, detection, generation, optimization). Based on the “D-A-M-I-E” classification tree, about 300 ML studies in civil engineering are reviewed. For each domain, analysis and comparison on following questions has been conducted: (1) which problems are mainly solved based on ML models, (2) which ML models are mainly applied in each domain and problem, (3) how advanced the ML models are and (4) what kind of data are used and what processing of data is performed for application of ML models. This paper assessed the expansion and applicability of the proposed methodology to other areas (e.g., Earth system modeling, climate science). Furthermore, based on the identification of research gaps of ML models in each domain, this paper provides future direction of ML in civil engineering based on the approaches of dealing data (e.g., collection, handling, storage, and transmission) and hopes to help application of ML models in other fields.

How to cite: Kim, J. and Jung, D.: State-of-the-Art Review of Machine Learning Models in Civil Engineering: Based on DAMIE Classification Tree, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11636, https://doi.org/10.5194/egusphere-egu23-11636, 2023.