EGU23-11782, updated on 09 Jan 2024
https://doi.org/10.5194/egusphere-egu23-11782
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A workflow to generate DAS based earthquake catalog, applied to an offshore telecommunication cable in central Chile

Marie Baillet, Alister Trabattoni, Martijn Van Den Ende, Clara Vernet, and Diane Rivet
Marie Baillet et al.
  • Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Geoazur, VALBONNE, France (marie.baillet@geoazur.unice.fr)

Fiber-optic Distributed Acoustic Sensing (DAS) is of critical value for the expansion of seismological networks, particularly in regions that are hard to instrument. The work presented here is part of the 5-year ERC ABYSS project, which aims at building a permanent seafloor observatory to increase our ability to capture low magnitude seismic signals from the subduction fault zone in the DAS data recorded by offshore telecommunication cables along the central coast of Chile.

In preparation for this project, a first experiment named POST was conducted from October to December 2021 on a submarine fiber-optic cable connecting the city of Concón to La Serena. DAS data were recorded continuously for 38 days over a distance of 150 km from Concón, constituting more than 36700 virtual sensors sampling at 125 Hz. This experiment provided an opportunity to anticipate what will be recorded over the next 5 years of the project, and to allow us to develop routines that will be applied later for real-time data processing.

As a first step, we developed an automated routine for generating a preliminary earthquake catalog, comprising various conventional signal processing steps, including data denoising, change-point detection, and separating seismic events from transient instrumental noise making use of the two-dimensional character of the DAS data. Over a span of 38 days (worth 72 TB of data), our pipeline detected more than 900 local, regional, and teleseismic events with local magnitudes down to ML < 2 (based on the Centro Sismológico Nacional (CSN) public catalog). The size of our catalog, enriched with numerous off-shore events, is a significant improvement over the current CSN catalog, which may aid future studies into the Chilean margin subduction zone seismicity.

How to cite: Baillet, M., Trabattoni, A., Van Den Ende, M., Vernet, C., and Rivet, D.: A workflow to generate DAS based earthquake catalog, applied to an offshore telecommunication cable in central Chile, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-11782, https://doi.org/10.5194/egusphere-egu23-11782, 2023.