First evaluation of a 6-months Meteodrone campaign
- 1MeteoSwiss, Payerne, Switzerland (secretariat@meteoswiss.ch)
- 2Meteomatics AG, Sankt Gallen, Switzerland
- 3MeteoSwiss, Zurich, Switzerland
From December 2021 to May 2022, MeteoSwiss conducted a proof of concept with Meteomatics to demonstrate the capability of drones to provide data of sufficient quality and reliability on a routine operational basis. Meteodrones MM-670 were operated automatically 8 times per night at Payerne, Switzerland. 864 meteorological profiles were measured and compared to co-localized measurements including radiosoundings and remote-sensing instruments. To our knowledge, it is the first time that Meteodrone measurements are evaluated in such an intensive campaign.
The availability of the Meteodrone measurements over the whole campaign was 75.7% with 82.2% of the flights reaching the nominal altitude of 2000m above sea level. Using the radiosondes as a reference, the quality of the Meteodrone measurements can be quantified according to WMO requirements (WMO OSCAR , 2022). Applying this method, the temperature measured by the Meteodrone can be considered as a “breakthrough”, meaning that they are a significant improvement if they are used for high resolution Numerical Weather Prediction. The Meteodrone’s humidity and wind profiles are classified as “useful” for high-resolution numerical weather predictions, suggesting they can be used for assimilation in numerical models. The quality is similar compared to the temperature measured by a microwave radiometer and the humidity measured by a Raman Lidar. However, the wind measured by a Doppler Lidar was more accurate than the estimation of the Meteodrone.
This campaign opens the door for operational usage of automatic drones for meteorological applications.
How to cite: Hervo, M., Pasquier, J., Hammerschmidt, L., Weusthoff, T., Fengler, M., and Haefele, A.: First evaluation of a 6-months Meteodrone campaign, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11813, https://doi.org/10.5194/egusphere-egu23-11813, 2023.